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1 Probability Space

The main concept of probability is a random experiment, i.e. an experiment with an
uncertain outcome. Associated with random experiments is the probability space which
is made of three ingredients:

1. the collection of all possible outcomes: sample space Ω;

2. the collection of all possible events: σ-algebra F ;

3. the probability measure P ;

and we write it as
(Ω,F , P ).

1.1 Sample space

Experiment: a procedure which can be repeated any number of times and has a well-
defined set of possible outcomes.

Sample outcome: a potential eventuality of the experiment. The notation ω is used for
an outcome.

Sample space: the set of all possible outcomes. The notation Ω is used for the sample
space of an experiment. An outcome ω is a member of the sample space Ω, that is, ω ∈ Ω.

Example: a fair six-sided die is thrown once. The outcomes are numbers between 1 and
6, i.e. the sample space is given by Ω = {1, . . . , 6}.

Example: a fair six-sided die is thrown twice. The outcomes are pairs of numbers be-
tween 1 and 6. For example, (3, 5) denotes a 3 on the first throw and 5 on the second. The
sample space is given by Ω = {(i, j) : i = 1, . . . , 6, j = 1, . . . , 6}. In this example the
sample space is finite so can be written out in full:

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
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Example: the measurement of people’s height has the positive real numbers as sample
space, if we allow for infinite precision in the measurement.

Example: assume to have an experiment with a given sample space Ω, then the experi-
ment corresponding to n replications of the underlying experiment has sample space Ωn.
Notice that, in principle we can repeat an experiment infinitely many times.

1.2 Elementary set theory

Notation: given a sample space Ω, we define the following objects:

Set terminology Probability terminology
A Subset of Ω Event some outcome in A occurs

Ac Complement Event no outcome in A occurs

A ∩B Intersection Event outcome in both A and B occur

A ∪B Union Event outcome in A and/or B occur

A\B Difference Event outcome in A but not in B occur

A ⊆ B Inclusion If outcome is in A it is also in B occur

∅ Empty set Impossible event

Ω Whole space Certain event

Properties of Intersections and Unions

1. Commutative: A ∩B = B ∩ A,
A ∪B = B ∪ A.

2. Associative: A ∩ (B ∩ C) = (A ∩B) ∩ C,
A ∪ (B ∪ C) = (A ∪B) ∪ C.

3. Distributive: A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

4. With whole space: A ∩ Ω = A,
A ∪ Ω = Ω.

5. With empty set: A ∩ ∅ = ∅,
A ∪ ∅ = A.
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Properties of the complement set: Ac = Ω\A, that is, ω ∈ Ac ⇐⇒ ω /∈ A.

1. (Ac)c = A.

2. A ∩ Ac = ∅.

3. A ∪ Ac = Ω.

4. (A ∪B)c = Ac ∩Bc.

5. De Morgan’s theorem (a generalization of 4 above): (
⋃n
i=1Ai)

c =
⋂n
i=1A

c
i .

Partition of Ω: {A1, . . . , An} is a partition if:

1. mutually exclusive: Ai ∩ Aj = ∅ for any i ̸= j, so A1, . . . , An are disjoint sets;

2. exhaustive:
⋃n
i=1Ai = Ω;

3. not-empty: Ai ̸= ∅ for any i.

Notice that n can be infinite.

1.3 Events

For any experiment, the events form a collection of all the possible subsets of Ω which we
denote F and has the following properties:

1. ∅ ∈ F ,

2. if A ∈ F then Ac ∈ F ,

3. if A1, A2, . . . ,∈ F , then
⋃∞
i=1Ai ∈ F . The union has to be infinite.

Any collection of subsets with these properties is known as a σ-algebra.

If Ω has n elements, then F has 2n elements. Indeed, the number of elements of F is
made of the sum of all possible combinations of n elements, i.e., for any 0 ≤ k ≤ n, we
need to compute all the possible k-elements subsets of an n-elements set:

n∑
k=0

(
n

k

)
= 2n.

The binomial coefficient is also used to find the coefficients of binomial powers, the gen-
eral formula is

(x+ y)n =
n∑
k=0

(
n

k

)
xn−kyk

and by setting x = y = 1 we have the result above. Another useful formula for the
binomial coefficient is (

n

k

)
=

n!

(n− k)!k!
.
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1.4 Probability

In an experiment the intuitive definition of probability is the ratio between the number of
favorable outcomes over the total number of possible outcomes or with the above notation,
the probability of an event A ⊂ Ω, such that A ∈ F , is:

P (A) =
#elements inA
#elements inΩ

.

Slightly more sophisticated is the “frequentist” definition of probability which is based
on the frequency fn with which a given event A is realized, given a total number n of
repetitions of an experiment:

P (A) = lim
n→∞

fn.

Example: if we toss a fair coin the sample space is Ω = {H,T}, then the event A = {H}
has probability

P ({H}) = #elements inA
#elements inΩ

=
1

2
.

Alternatively, we could compute this probability by tossing the coin n times, where n is
large, and compute the number of times we get head say kn. If the coin is fair, we should
get

P ({H}) = lim
n→∞

kn
n

=
1

2
.

We here adopt a more mathematical definition of probability, based on the Kolmogorov
axioms.

Probability measure: is a function P : F −→ [0, 1], such that

1. P (A) ≥ 0,

2. P (Ω) = 1,

3. if A1, A2, . . . , is an infinite collection of mutually exclusive members of F then

P (
∞⋃
i=1

Ai) =
∞∑
i=1

P (Ai),

This in turn implies that for any finite collection A1, A2, . . . , An of mutually exclu-
sive members of F then

P (
n⋃
i=1

Ai) =
n∑
i=1

P (Ai).

We can associate a probability space (Ω,F , P ) with any experiment.

Properties of probability measures
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1. P (Ac) = 1− P (A).

2. P (A) ≤ 1.

3. P (∅) = 0.

4. P (B ∩ Ac) = P (B)− P (A ∩B).

5. P (A ∪B) = P (A) + P (B)− P (A ∩B).

6. If A ⊆ B then P (B) = P (A) + P (B\A) ≥ P (A).

7. More generally if A1, . . . , An are events then

P

(
n⋃
i=1

Ai

)
=
∑
i

P (Ai)−
∑
i<j

P (Ai∩Aj)+
∑
i<j<k

P (Ai∩Aj∩Ak)+. . .+(−1)n+1P (A1∩. . .∩An).

8. For any partition A1, . . . , An of Ω

P (B) =
n∑
i=1

P (B ∩ Ai).

Notice that n can be infinite.

9. Boole’s inequality:

P

(
∞⋃
i=1

Ai

)
≤

∞∑
i=1

P (Ai).

2 Counting or occupancy models

Multiplication rule for counting ordered sequences: an operation Ai can be performed
in ni different ways for i = 1, . . . , k. The ordered sequence (operation A1, operation A2,
. . . , operation Ak) can be performed in n1 · n2 · . . . · nk ways. We write this product as∏k

i=1 ni.

When the sample space Ω is finite and all the outcomes in Ω are equally likely, we calcu-
late the probability of an event A by counting the number of outcomes in the event:

P (A) =
#elements inA
#elements inΩ

=
|A|
|Ω|

Consider the following problem: k balls are distributed among n distinguishable boxes
in such a manner that all configurations are equally likely or analogously (from the mod-
eling point of view) we extract k balls out on n. We need to define the sample space
and its cardinality, i.e. the number of its elements. The balls can be distinguishable or
undistinguishable which is analogous to saying that the order in the extraction matters or
not. Moreover, the extraction can be with or without replacement, i.e. the choice of a ball
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is independent or not from the ball previously chosen. In terms of balls and boxes this
means that we can put as many balls as we want in each box (with replacement) or only
one ball can fit in each box (without replacement).

There are four possible cases (three of which are named after famous physicists).

Ordered (distinct), without replacement (dependent): in this case we must have k ≤ n
and the sample space is

Ω = {(ω1 . . . ωk) : 1 ≤ ωi ≤ n ∀i ωi ̸= ωj for i ̸= j},

where ωi is the box where ball i is located. All the possible permutations of k balls that
can be formed from n distinct elements, i.e. not allowing for repetition, are

|Ω| = n · (n− 1) · (n− 2) · . . . · (n− k + 1) =
n!

(n− k)!
.

Ordered (distinct), with replacement (independent) - Maxwell-Boltzmann: the sam-
ple space is

Ω = {(ω1 . . . ωk) : 1 ≤ ωi ≤ n ∀i},

where ωi is the box where ball i is located. Each ball can be selected in n ways, so the
total number of outcomes is

|Ω| = n · n · . . . · n︸ ︷︷ ︸
k times

= nk.

Unordered (not distinct), without replacement (dependent) - Fermi-Dirac: again we
need k ≤ n and the sample space is

Ω =

{
(ω1 . . . ωn) : ωi = {0, 1} ∀i and

n∑
i=1

ωi = k

}
,

with box i occupied if and only if ωi = 1. Starting from the case of distinct balls, we have
to divide out the redundant outcomes and we obtain the total number of outcomes:

|Ω| = n · (n− 1) · (n− 2) · . . . · (n− k + 1)

1 · 2 · . . . · k
=

n!

k!(n− k)!
=

(
n

k

)
.

Unordered (not distinct), with replacement (independent) - Bose-Einstein: the sample
space is

Ω =

{
(ω1 . . . ωn) : 0 ≤ ωi ≤ k ∀i and

n∑
i=1

ωi = k

}
,

with ωi the number of balls in box i. This is the most difficult case to count. The easiest
way is to think in terms of k balls and n boxes. We can put as many balls as we want in
each box and balls are identical. To find all the possible outcomes it is enough to keep

10



track of the balls and of the walls separating the boxes. Excluding the 2 external walls,
we have n + 1− 2 = n− 1 walls and k balls, hence we have n− 1 + k objects that can
be arranged in (n− 1 + k)! ways. However, since the balls and the walls are identical we
need to divide out the redundant orderings which are k!(n− 1)!, so

|Ω| = (n− 1 + k)!

k!(n− 1)!
=

(
n− 1 + k

k

)
.

Example: in a lottery 5 numbers are extracted without replacement out of {1, . . . , 90}.
Which is the probability of extracting the exact sequence of numbers (1, 2, 3, 4, 5)?
The possible outcomes of this lottery are all the 5-tuples ω = (ω1, . . . , ω5) such that
ωi ∈ {1, . . . , 90}. We can extract the first number in 90 ways, the second in 89 ways and
so on, so

|Ω| = 90 · 89 · 88 · 87 · 86 =
90!

85!
.

Since all the outcomes are equally likely, the probability we are looking for is 85!/90! ≃
1/5109.

Example: if in the previous example the order of extraction does not matter, i.e. we look
for the probability of extracting the first 5 numbers independently of their ordering, then
Ω contains all the combinations of 5 numbers extracted from 90 numbers:

|Ω| =
(
90

5

)
.

Since all the outcomes are equally likely, the probability we are looking for is 1/
(
90
5

)
≃

1/4107 so as expected it is greater than before, although still very small!

Example: which is the probability that, out of n people randomly chosen, at least two
were born in the same day of the year? We can define a generic event of the sample space
as ω = (ω1, . . . , ωn) such that ωi ∈ {1, . . . , 365}. Each birth date can be selected n times
so

|Ω| = 365 · 365 · . . . · 365︸ ︷︷ ︸
n times

= 365n.

Now we have to compute the number of elements contained in the event A = {ω ∈ Ω :
ω has at least two identical entries}. It is easier to compute the number of elements of the
complement set Ac = {ω ∈ Ω : ω has all entries distinct}. Indeed Ac is made of all
n-tuples of numbers that are extracted out of 365 numbers without replacement, so the
first entry can be selected in 365 ways, the second in 364 ways and so on, then

|Ac| = 365!

(365− n)!
.

If we assume that the outcomes of Ω are all equally likely (which is not completely correct
as we now that birth rates are not equally distributed throughout the year), then

P (A) = 1− 365!

365n(365− n)!
,
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which for n = 23 is 0.507, for n = 50 is 0.974, and for n = 100 is 0.9999997.

Example: an urn contains b black balls and r red balls, we extract without replacement
n ≤ (b + r) balls, what is the probability of extracting k red balls? We first compute all
the possible ways of extracting without replacement n balls out of (b + r), then |Ω| =(
b+r
n

)
. Let us assume that the all the balls are numbered and that the red ones have index

{1, . . . , r} while the black ones have index {r + 1, . . . , b+ r} so we are interested in the
event

A = {ω : ω contains exactly k elements with index ≤ r},

then is like asking for the all possible ways of extracting k balls out of r and n − k balls
out of b, therefore

P (A) =

(
r
k

)(
b

n−k

)(
b+r
n

) .

Reading

Casella and Berger, Sections 1.1, 1.2.

3 Conditional probability

Let A and B be events with P (B) > 0. The conditional probability of A given B is the
probability that A will occur given that B has occurred;

P (A|B) =
P (A ∩B)

P (B)
.

It is as if we were updating the sample space to B, indeed P (B|B) = 1. Moreover, if A
and B are disjoint, then P (A|B) = P (B|A) = 0, once one of the two events took place
the other becomes impossible.

By noticing that

P (A ∩B) = P (A|B)P (B) and P (A ∩B) = P (B|A)P (A),

we have the useful formula

P (A|B) = P (B|A)P (A)
P (B)

.

Law of total probability: if A1, . . . , An is a partition of Ω and B is any other event
defined on Ω, then

P (B) =
n∑
i=1

P (B|Ai)P (Ai).
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Notice that n can be infinite.

Bayes’ rule: if A1, . . . , An is a partition of Ω and B is any other event defined on Ω, then
for any j = 1, . . . , n

P (Aj|B) = P (B|Aj)
P (Aj)

P (B)
=

P (B|Aj)P (Aj)∑n
i=1 P (B|Ai)P (Ai)

.

Notice that n can be infinite.

Multiplication rule for intersections: let A1, . . . , An be a set of events defined on Ω,

P

(
n⋂
i=1

Ai

)
=

n∏
j=1

P

(
Aj|

j−1⋂
i=0

Ai

)
,

where we define A0 = Ω.

4 Independence

If the occurrence of an event B has no influence on the event A then

P (A|B) = P (A),

then from previous section

P (B|A) = P (A|B)
P (B)

P (A)
= P (B),

so A has no influence on B, moreover from Bayes’ rule

P (A ∩B) = P (A)P (B|A) = P (A)P (B),

and this is the definition of statistical independence. Two events A and B are said to be
independent (A ⊥ B) if and only if

P (A ∩B) = P (A)P (B).

1. If P (A) > 0 then P (B|A) = P (B) ⇐⇒ A ⊥ B.
If P (B) > 0 then P (A|B) = P (A) ⇐⇒ A ⊥ B.

2. If A ⊥ B then Ac ⊥ Bc, Ac ⊥ B and A ⊥ Bc.

A collection of events A1, . . . , An is said to be mutually independent if for every
subset Ai1 , . . . , Aik we have

P

(
k⋂
j=1

Aij

)
=

k∏
j=1

P (Aij).
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Example A common misconception is that an event A is independent of its complement
Ac. In fact, this is only the case when P (A) ∈ {0, 1} (check this!). Otherwise, the
events A and Ac since the never occur at the same time and hence the probability of their
intersection is zero.

Example: another common misconception is that an event is independent of itself. If A
is an event that is independent of itself, then

P (A) = P (A ∩ A) = P (A)P (A) = (P (A))2.

The only finite solutions to the equation x = x2 are x = 0 and x = 1, so an event is
independent of itself only if it has probability 0 or 1.

Example: consider tossing a coin 3 times, then we have 23 = 8 possible outcomes and if
the coin is fair each outcome has probability 1

8
. If we define Hi the event of having head

at the the i-th toss for i = 1, 2, 3 we have only four possible outcomes contained in each
event Hi, therefore

P (Hi) =
4

8
=

1

2
for i = 1, 2, 3.

To verify that His are independent we need to compute

P (H1 ∩H2 ∩H3) = P ({HHH}) = 1

8
=

1

2
· 1
2
· 1
2
= P (H1)P (H2)P (H3),

but we also have to compute for any i ̸= j

P (Hi ∩Hj) = P (Hi)P (Hj),

so for example when i = 1 and j = 3

P (H1 ∩H3) = P ({HTH,HHH}) = 2

8
=

1

2
· 1
2
= P (H1)P (H3).

Example: consider tossing a tetrahedron (i.e. a die with just four faces) with a red, a blue,
a yellow face, and a face with all three colours. Each face has equal probability 1

4
to be

selected.1 We want to see if the events: red (R), green (G), blue (B) are independent. The
probability of selecting any colour is then P (R) = P (G) = P (B) = 1

2
since all colours

appear twice on the tetrahedron. Consider the conditional probability

P (R|G) = P (RG)

P (G)
=

1/4

1/2
=

1

2
= P (R),

so the event R is independent of the event G, by repeating the same reasoning with all
couples of colours we see that colours are pairwise independent. However, we do not
have mutual independence indeed, for example,

P (R|GB) =
P (RGB)

P (GB)
=

1/4

1/4
= 1 ̸= P (R) =

1

2
.

1Due to its geometry in this case the selected face is the bottom one once the tetrahedron is tossed.
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Example. Consider the following game: your ST202 lecturer shows you three cups and
tells you that under one of these there is a squashball while under the other two there is
nothing. The aim of the Monty Squashball problem2 is to win the squashball by picking
the right cup. Assume you choose one of the three cups, without lifting it. At this point
one of the remaining cups for sure does not contain the ball and the your lecturer lifts
it showing emptiness (selecting one at random if there is a choice). With two cups still
candidates to hide the squashball, you are given a second chance of choosing a cup: will
you stick to the original choice or will you switch to the other cup?

We can model and solve the problem by using conditional probability and Bayes’ rule.

The probability of getting the ball is identical for any cup, so

P (ball is in k) =
1

3
, k = 1, 2, 3.

Once you choose a cup (say i), your ST202 lecturer can lift only a cup with no ball and
not chosen by yourself, he will lift cup j (different from i and k) with probability

P (ST202 lecturer lifts j|you choose i and ball is in k) =
{

1
2

if i = k,
1 if i ̸= k.

Let us call the cup you pick number 1 (we can always relabel the cups). Using Bayes’
rule we compute (for j ̸= k and j ̸= 1)

P (ball is in k| ST202 lecturer lifts j) =
P (ST202 lecturer lifts j| ball is in k)P (ball is in k)

P (ST202 lecturer lifts j)
.

Since P (ball is in k) = 1/3, we are left to compute (for j ̸= 1)

P (lecturer liftsj) =
3∑

k=1

P (lecturer lifts j| ball is in k)P (ball is in k)

=
1

2
∗ 1

3
+ 0 ∗ 1

3
+ 1 ∗ 1

3
=

1

2
.

This can also be seen by symmetry and law of total probability.

So if you choose cup 1 and the ST202 lecturer lifts cup 2, the probability that the ball
is in cup 3 is

P (ball is in 3|ST202 lecturer lifts 2) =
1 · 1

3
1
2

=
2

3
.

while the probability that the ball is in cup 1, i.e. the cup you chose at the beginning

P (ball is in 1|ST202 lecturer lifts 2) =
1
2
· 1
3

1
2

=
1

3
.

Hence, switching gives a higher probability of winning the squashball.
2this is an eco-friendly version of the famous Monty Hall problem which has “doors” for “cups”, “goats”

for “nothing” and a “car” for “squashball”; no animals are harmed in the Monty Squashball problem. It
is also closely related to Bertrand’s box paradox and the Prisoners’ paradox (not to be confused with the
Prisoners’ dilemma)
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Reading

Casella and Berger, Sections 1.3.

5 Random variables

We use random variables to summarize in a more convenient way the structure of experi-
ments.

Borel σ-algebra: is the σ-algebra B(R) (called the Borel σ-algebra) on Ω = R, i.e.
the σ-algebra generated by (i.e. the smalles sigma-algebra containing) the intervals (a, b]
where we allow for a = −∞ and b = +∞.
We could have equally have taken intervals [a, b] (think about this for a while!).

Random variable: a real-valued function is defined on the sample space

X : Ω −→ R

with the property that, for every B ∈ B(R), X−1(B) ∈ F .

Define, for all x ∈ R, the set of outcomes

Ax = {ω ∈ Ω : X(ω) ≤ x}

then Ax ∈ F . Thus, Ax is an event, for every real-valued x.

The function X defines a new sample space (its range) and creates a bijective correspon-
dence between events in the probability space (Ω,F , P ) with events in the probability
space (R,B(R), PX) which allows for easier mathematical computations. We need to de-
fine the probability measure on the Borel σ-algebra.

Example: consider the experiment of tossing a coin n times, the sample space is made of
all the n-tuples ω = (ω1, . . . , ωn) such that ωi = 1 if we get head and ωi = 0 if we get
tail. An example of random variable is the function: number of heads in n tosses which
we can define as

X(ω) =
n∑
i=1

ωi.

Consider the case in which we get m times head with m < n. Then, for every number m
we can define the event Am = {ω = (ω1, . . . , ωn) ∈ Ω : X(ω) =

∑n
i=1 ωi = m}.

Notice that in this example the random variables have only integer values which are a
subset of the real line. Notice also that the original sample space is made of 2n elements,
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while the new sample space is made of the integer numbers {0 . . . , n} which is a smaller
space.

Example: consider the random walk, i.e. a sequence of n steps ω = (ω1, . . . , ωn) such
that the i-th step can be to the left or to the right. We can introduce a random variable that
represents the i-th step by Xi(ω) = ±1 where it takes the value 1 if the step is to the left
and -1 if the step is to the right. We can also introduce the random variable that represents
the position of the random walk after k steps: Yk(ω) =

∑k
i=1Xi(ω).

5.1 Cumulative distribution function

We must check that the probability measure P defined on the original sample space Ω is
still valid as a probability measure defined on R. If the sample space is Ω = {ω1, . . . , ωn}
and the range of X is {x1, . . . , xm}, we say that we observe X = xi if and only if the
outcome of the experiment is ωj such that X(ωj) = xi.

Induced probability: we have two cases

1. finite or countable sample spaces: given a random variable X , the associated prob-
ability measure PX is such that, for any xi ∈ R,

PX(X = xi) = P ({ωj ∈ Ω : X(ωj) = xi}).

2. uncountable sample spaces given a random variable X , the associated probability
measure PX is such that, for any B ∈ B(R),

PX(X ∈ B) = P ({ω ∈ Ω : X(ω) ∈ B}).

Hereafter, given the above equivalences, we denote PX simply as P .

Cumulative distribution function (cdf): given a random variable X , it is the function

F : R −→ [0, 1], s.t. F (x) = P (X ≤ x), ∀x ∈ R.

Properties of cdfs: F is a cdf if and only if

1. Limits: limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1.

2. Non-decreasing: if x < y then F (x) ≤ F (y).

3. Right-continuous: limh→0+ F (x+ h) = F (x).

Probabilities from distribution functions
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1. P (X > x) = 1− F (x);

2. P (x < X ≤ y) = F (y)− F (x);

3. P (X < x) = limh→0− F (x+ h) = F (x−);

4. P (X = x) = F (x)− F (x−).

Identically distributed random variables: the random variables X and Y are identi-
cally distributed if, for any set A ∈ B(R), P (X ∈ A) = P (Y ∈ A). This is equivalent to
saying that FX(x) = FY (x), for every x ∈ R.

Example: in the random walk the step size random variable Xi is distributed as:

P (Xi = 1) =
1

2
, P (Xi = −1) =

1

2
.

while
FX(−1) =

1

2
, FX(1) = 1.

The random variables Xi are identically distributed. Moreover, they are also independent
so

P (ω) = P (X1 = ω1, . . . , Xn = ωn) =
n∏
i=1

P (Xi = ωi),

for any choice of ω1, . . . , ωn = ±1. Therefore, all n-tuples ω are equally probable with
probability

P (ω) = P (X1 = ω1, . . . , Xn = ωn) =
n∏
i=1

1

2
=

1

2n
.

Consider the random variable Z the counts the steps to the right, then the probability of
having k steps to the right and n− k steps to the left is

P (Z = k) = FZ(k) = (# of ways of extracting k 1s out of n) ( Prob. of a generic ω)

=

(
n

k

)
1

2n
.

We say that Xi follows a Bernoulli distribution and Z follows a Binomial distribution.
The previous example of a fair coin can be modeled exactly in the same way but this time
by defining Xi(ω) = 0 or 1.

5.2 Discrete random variables

A random variableX is discrete if it only takes values in some countable subset {x1, x2, . . .}
of R, then F (x) is a step-function of x, but still right-continuous.
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Probability mass function (pmf): given a discrete random variable X , it is the function

f : R −→ [0, 1] s.t. f(x) = P (X = x) ∀x ∈ R.

Properties of pmfs

1. f(x) = F (x)− F (x−);

2. F (x) =
∑

i:xi≤x f(xi);

3.
∑

i f(xi) = 1;

4. f(x) = 0 if x /∈ {x1, x2, . . .}.

5.3 Continuous random variables

A random variable X is continuous if it takes values in R and its distribution function
F (x) is an absolutely continuous function of x (F is differentiable “almost everywhere”)
.

Probability density function (pdf): given a continuous random variable X , (a version
of) its density is an integrable function f : R −→ [0,+∞) such that the cdf of X can be
expressed as

F (x) =

∫ x

−∞
f(u)du ∀x ∈ R.

Properties of continuous random variables

1. P (X = x) = 0 for any x ∈ R;

2.
∫ +∞
−∞ f(x)dx = 1;

3. f(x) ≥ 0 for any x ∈ R;

4.
∫ b
a
f(u)du = P (a < X ≤ b).

Notice that, in principle, any nonnegative function with a finite integral over its support
can be turned into a pdf. So if ∫

A⊂R
h(x)dx = K <∞

for some constant K > 0, then h(x)/K is a pdf of a random variable with values in A.

Unified notation: given a random variable X;

P (a < X ≤ b) =

∫ b

a

dF (x) =


∑

i:a<xi≤b f(xi), if X discrete,∫ b
a
f(u)du, if X continuous.

19



Reading

Casella and Berger, Sections 1.4 - 1.5 - 1.6.

6 Expectations

Mean: given a random variable X , its mean is defined as

µ = E[X] =

∫ +∞

−∞
xdF (x) =


∑

i xif(xi), if X discrete,∫ +∞
−∞ xf(x)dx, if X continuous,

where f is either the pmf or the pdf. The definition holds provided that
∫ +∞
−∞ |x|dF (x) <

∞.

If we interpret µ as a good guess of X we may also be interested to have a measure of the
uncertainty with which X assumes the value µ, this is known as variance of X .

Variance: given a random variable X , its variance is defined as

σ2 = Var[X] =

∫ +∞

−∞
(x− µ)2dF (x) =


∑

i(xi − µ)2f(xi), if X discrete,∫ +∞
−∞ (x− µ)2f(x)dx, if X continuous,

where f is either the pmf or the pdf. The standard deviation is defined as σ =
√

Var[X].
Notice that σ2 = E[(X − µ)2]. The definition holds provided that

∫ +∞
−∞ (x− µ)2dF (x) <

∞.

Expectations: for an integrable function g : R −→ R such that
∫∞
−∞ |g(x)|dF (x) < ∞,

the expectation of the random variable g(X) as

E[g(X)] =

∫ +∞

−∞
g(x)dF (x) =


∑

i g(xi)f(xi), if X discrete,∫ +∞
−∞ g(x)f(x)dx, if X continuous,

Note that we have cheated a bit here, since we need to show in fact that g(X) is a random
variable and also that the given expression corresponds to the one given above for the
random variable g(X). This can be done but is beyond the scope of ST202. Feel free to
ask me if you would like to hear more about this.

Properties of expectations: for any constant a, integrable functions g1 and g2, and ran-
dom variables X and Y :

1. E[a] = a;
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2. E[ag1(X) + bg2(Y )] = aE[g1(X)] + bE[g2(Y )];

3. if X ≥ Y then E[X] ≥ E[Y ];

4. Var[ag1(X) + b] = a2Var[g1(X)].

The variance of X can be written in a more convenient form

Var[X] = E[(X − E[X])2] = E[X2 + E[X]2 − 2E[X]X] =

= E[X2] + E[X]2 − 2E[X]2 =

= E[X2]− E[X]2.

6.1 Moments

Moments are expectations of powers of a random variable. They characterise the distribu-
tion of a random variable. Said differently (and somewhat informally), the more moments
of X we can compute, the more precise is our knowledge of the distribution of X .

Moment: given a random variable X , for r a positive integer then the rth moment, µr, of
X is

µr = E[Xr] =

∫ +∞

−∞
xrdF (x)


∑

i x
r
if(xi), if X discrete,∫ +∞

−∞ xrf(x)dx, if X continuous,

where f is either the pmf or the pdf. The definition holds provided that
∫ +∞
−∞ |x|rdF (x) <

∞.

Central moment: given a random variable X , the rth central moment, mr is

mr = E[(X − µ1)
r].

The definition holds provided that
∫ +∞
−∞ |x|rdF (x) < ∞. so if the r-th moment exists,

then also the r-th central moment exists.

Properties of moments:

1. mean: µ1 = E[X] = µ and m1 = 0;

2. variance: m2 = E[(X − µ1)
2] = Var[X] = σ2;

3. coefficient of skewness: γ = E[(X − µ1)
3]/σ3 = m3/m

3
2
2 ;

4. coefficient of kurtosis: κ = (E[(X − µ1)
4]/σ4) = (m4/m

2
2).

What would a distribution with postive skew and large kurtosis look like?
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6.2 Inequalities involving expectations

A general inequality: let X be a random variable with X ≥ 0 and let g be a positive
increasing function on R+, then, for any a > 0,

P (g(X) ≥ a) ≤ E[g(X)]

a
.

There are two special cases.

1. Markov’s inequality: let X be a random variable with X ≥ 0 and E[X] defined,
then, for any a > 0,

P (X ≥ a) ≤ E[X]

a
.

2. Chebyshev’s inequality: let X be a random variable with E[X2] < ∞, then, for
any a > 0,

P ((X − E[X])2 ≥ a) ≤ Var[X]

a2
.

Jensen’s inequality: If X is a random variable with E[X] defined, and g is a convex
function with E[g(X)] defined, then

E[g(X)] ≥ g(E[X]).

6.3 Moment generating functions

These are functions that help to compute moments of a distribution and are also useful
to characterie the distribution. However, it can be shown that the moments do not char-
acterise the distribution uniquely (if you would like to know more about this, check the
log-normal distribution).

Moment generating function (mgf): given a random variable X , it is a function

M : R −→ [0,∞) s.t. M(t) = E[etX ],

where it is assumed M(t) < ∞ for |t| < h and some h > 0, i.e. the expectation exists in
a neighborhood of 0. Therefore,

M(t) =

∫ +∞

−∞
etxdF (x) =


∑

i e
txif(xi), if X discrete,∫ +∞

−∞ etxf(x)dx, if X continuous.

Properties of mgfs: if X has mgf M(t) then
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1. Taylor expansion:

M(t) = 1 + tE[X] +
t2

2!
E[X2] + . . .+

tr

r!
E[Xr] + . . . =

∞∑
j=0

E[Xj]

j!
tj;

2. the rth moment is the coefficient of tr/r! in the Taylor expansion;

3. derivatives at zero:

µr = E[Xr] =M (r)(0) =
dr

dtr
M(t)

∣∣∣∣
t=0

.

Proof: by differentiating M(t) (in a neighbourhood of 0 assuming existence)

d

dt
M(t) =

d

dt

∫ +∞

−∞
etxdF (x) =

=

∫ +∞

−∞

d

dt
etxdF (x) =

=

∫ +∞

−∞
xetxdF (x) =

= E[XetX ],

and in general
dr

dtr
M(t) = E[XretX ],

by imposing t = 0 we get the desired result.

Uniqueness: let FX and FY be two cdfs with all moments defined, then:

1. if X and Y have bounded support, then FX(x) = FY (x) for any x ∈ R if and only
if E[Xr] = E[Y r] for any r ∈ N;

2. if the mgfs exist and MX(t) = MY (t) for all |t| < h and some h > 0, then
FX(x) = FY (x) for all x ∈ R.

Cumulant generating function (cgf): given a random variable X with moment generat-
ing function M(t), it is defined as

K(t) = logM(t).

Cumulant: the rth cumulant, cr, is the coefficient of tr/r! in the Taylor expansion of the
cumulant generating function K(t):

cr = K(r)(0) =
dr

dtr
K(t)

∣∣∣∣
t=0

.

Properties of cgfs:
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1. c1 = µ1 = µ (mean, first moment);

2. c2 = m2 = σ2 (variance, second central moment);

3. c3 = m3 (third central moment);

4. c4 + 3c22 = m4 (fourth central moment).

Reading

Casella and Berger, Sections 2.2 - 2.3.

7 Distributions

7.1 Discrete distributions

Degenerate: all probability concentrated in a single point a.

• f(x) = 1 for x = a.

• M(t) = eat, K(t) = at.

• µ = a, σ2 = 0.

Bernoulli: trials with two, and only two, possible outcomes, here labeled X = 0 (failure)
and X = 1 (success).

• f(x) = px(1− p)1−x for x = 0, 1.

• M(t) = 1− p+ pet, K(t) = log(1− p+ pet).

• µ = p, σ2 = p(1− p).

Binomial: we want to count the number of successes in n independent Bernoulli trials,
each with probability of success p. Consider n random variables Yi with just two possible
outcomes Yi = 0, 1, their sum X =

∑n
i=1 Yi is the total number of successes in n trials,

so 0 ≤ X ≤ n. Notation X ∼ Bin(n, p). We need to count all the possible ways to
extract x numbers out of n and multiply this number for the probability of success given
by the Bernoulli distribution.

• f(x) = n!
x!(n−x)!p

x(1− p)n−x =
(
n
x

)
px(1− p)n−x for x = 0, 1, . . . , n.

• M(t) = (1− p+ pet)n, K(t) = n log(1− p+ pet).

• µ = np, σ2 = np(1− p).

24



The Bernoulli distribution is equivalent to a binomial distribution with n = 1.

Examples: tossing a coin n times and counting the number of times we get head (or tail);
n steps in the random walk and counting the steps to the right (or to the left).
Suppose to roll a die k times and we want the probability of obtaining at least one 3. So
we have k Bernoulli trials with success probability p = 1/6. Define the random variable
X that counts the total number of 3 in k rolls, then X ∼ Bin(k, 1/6) and

P (at least one 3) = P (X > 0) = 1− P (X = 0) = 1−
(
k

0

)(
1

6

)0(
5

6

)k
= 1−

(
5

6

)k
If, by throwing two dice, we were interested in the probability of at least double 3 we
would get

P (at least one double 3) = 1−
(
35

36

)k
< P (at least one 3),

since 35/36 > 5/6.

Computing the moments and mgf of the binomial distribution: just notice that a bino-
mial random variable X is the sum of n Bernoulli independent random variables Yi, each
with mean E[Yi] = p and variance Var[X] = p(1− p) hence

E[X] = E

[
n∑
i=1

Yi

]
=

n∑
i=1

E[Yi] = np,

and (independence is crucial here)

Var[X] =
n∑
i=1

Var[Yi] = np(1− p).

The mgf is computed as

M(t) =
n∑
x=0

etx
(
n

k

)
px(1− p)n−x =

n∑
x=0

(
n

k

)
(pet)x(1− p)n−x

use the binomial expansion

(u+ v)n =
n∑
x=0

(
n

x

)
uxvn−x

and by substituting u = pet and v = 1− p we get

M(t) = (pet + 1− p)n.

Negative Binomial: we want to count the number of Bernoulli trials necessary to get a
fixed number of successes (i.e. a waiting time). Consider a random variable X denoting
the trial at which the rth success occurs. We want the distribution of the event {X = x}
for x = r, r + 1, . . .. This event occurs only if we had r − 1 successes in x− 1 trials and
a success at the xth trial. By multiplying these probabilities we have
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• f(x) =
(
x−1
r−1

)
pr(1− p)x−r for x = r, r + 1, . . ..

• M(t) =
(

pet

1−(1−p)et

)r
, K(t) = −r log{(1− 1

p
)+ 1

p
e−t} for |t| < − log(1−p).

• µ = r
p
, σ2 = r(1−p)

p2
.

It is also the defined in terms of the number of failures before the rth success.

Geometric: to count the number of Bernoulli trials before the first success occurs. Equiv-
alent to a negative binomial with r = 1.

• f(x) = (1− p)x−1p for x = 1, 2, . . ..

• M(t) = pet

1−(1−p)et , K(t) = − log{(1− 1
p
) + 1

p
e−t} for |t| < − log(1− p).

• µ = 1
p
, σ2 = 1−p

p2
.

This distribution is memoryless, indeed, if X follows a geometric distribution, then, for
integers s > t,

P (X > s|X > t) =
P (X > s ∩X > t)

P (X > t)
=
P (X > s)

P (X > t)

= (1− p)s−t = P (X > s− t),

Given that we observed t failures we observe an additional s − t failures with the same
probability as we observed s − t failures at the beginning of the experiment. The only
thing that counts is the length of the sequence of failures not its position.

Hypergeometric: it is usually explained with the example of the urn model. Assume to
have an urn containing a total of N balls made up of N1 balls of type 1 and N2 = N −N1

balls of type 2, we want to count the number of type 1 balls chosen when selecting n < N
balls without replacement from the urn.

• f(x) =
(
N1

x

)(
N−N1

n−x

)
/
(
N
n

)
for x ∈ {0, . . . , n} ∩ {n− (N −N1), . . . , N1}.

• µ = nN1

N
, σ2 = nN1

N
N−N1

N
N−n
N−1

.

Uniform: for experiments with N equally probable outcomes

• f(x) = 1
N

for x = 1, 2, . . . , N .

• µ = N+1
2
, σ2 = N2−1

12
.
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Poisson: to count the number of events which occur in an interval of time. The assumption
is that for small time intervals the probability of an occurrence is proportional to the length
of the waiting time between two occurrences. We consider the random variable X which
counts the number of occurrences of a given event in a given unit time interval, it depends
on a parameter λ which is the intensity of the process considered. Notation Pois(λ).

• f(x) = λxe−λ

x!
for x = 0, 1, . . ..

• M(t) = eλ(e
t−1), K(t) = λ(et − 1).

• µ = λ, σ2 = λ.

The intensity is the average number of occurrences in a given unit time interval. Notice
that the Poisson distribution can also be used for the number of events in other specified
intervals such as distance, area or volume.

Example: think of crossing a busy street with an average of 300 cars per hour passing. In
order to cross we need to know the probability that in the next minute no car passes. In
a given minute we have an average of λ = 300/60 = 5 cars passing through. If X is the
number of cars passing in one minute we have

P (X = 0) =
e−550

0!
= 6.7379 · 10−3,

maybe is better to cross the street somewhere else. Notice that λ has to be the intensity
per unit of time. If we are interested in no cars passing in one hour then λ = 300 and
clearly the probability would be even smaller. If we want to know the average number of
cars passing in 5 minutes time then just define a new random variable X which counts the
cars passing in 5 minutes, which is distributed as Poisson with λ = 300/12 = 25 and this
is also the expected value.

The Poisson approximation: if X ∼ Bin(n, p) and Y ∼ Pois(λ) with λ = np, then for
large n and small p we have P (X = x) ≃ P (Y = x). More rigorously we have to prove
that for finite λ = np

lim
n→∞

FX(x;n, p) = FY (x;λ)

we can use mgfs and prove equivalently that

lim
n→∞

MX(t;n, p) = lim
n→∞

(1− p+ pet)n = eλ(e
t−1) =MY (t;λ).

Proof: we can use the following result: given a sequence of real numbers s.t. an → a for
n→ ∞, then

lim
n→∞

(
1 +

an
n

)n
= ea.

Now

lim
n→∞

MX(t;n, p) = lim
n→∞

(1− p+ pet)n = lim
n→∞

(
1 +

1

n
(et − 1)np

)n
=

= lim
n→∞

(
1 +

1

n
(et − 1)λ

)n
= eλ(e

t−1).
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7.2 Continuous distributions

Uniform: a random number chosen from a given closed interval [a, b]. Notation U(a, b).

• f(x) = 1
b−a for a ≤ x ≤ b.

• M(t) = etb−eta
t(b−a) for t ̸= 0 and M(0) = 1.

• µ = a+b
2
, σ2 = (b−a)2

12
.

Normal or Gaussian: this is the most important distribution. Notation N(µ, σ2).

• f(x) = 1
σ
√
2π
e−(x−µ)2/(2σ2) for −∞ < x <∞.

• M(t) = eµt+σ
2t2/2.

• E[X] = µ, Var[X] = σ2.

If X ∼ N(µ, σ2) then (X − µ)/σ = Z ∼ N(0, 1), is a standard normal distribution, i.e.
with zero mean and unit variance. We can use the moments of Z to compute the moments
of X , indeed

E[X] = E[µ+ σZ] = µ, Var[X] = Var[µ+ σZ] = σ2.

The shape of f(x) is symmetric around µ with inflection points at µ ± σ. A statistical
table (in the past) or a computer programme (nowadays) can be used to calculate the
distribution function. The following values will be useful later on:

P (|X − µ| ≤ σ) = P (|Z| ≤ 1) = .6826,

P (|X − µ| ≤ 2σ) = P (|Z| ≤ 2) = .9544,

P (|X − µ| ≤ 3σ) = P (|Z| ≤ 3) = .9974.

In particular, the so-called two-sigma rule states that (roughly) 95% (in a repeated sample)
of the data from a normal distribution falls within two standard deviations of its mean.

The normal distribution is characterized by just its first two moments. We can com-
pute higher order moments by using the following relation (holding for any differentiable
function g(X)) for X ∼ N(µ, σ2):

E[g(X)(X − µ)] = σ2E[g′(X)].

Check this (hint: use integration by parts).

From the above relation we have that all moments of a normal distribution are com-
putable starting from the second central moment. Moreover, for a standard normal random
variable Z all moments of odd order are zero, in particular

skewness γ =
E[Z3]

E[Z2]3/2
= E[Z2Z] = E[2Z] = 0,

kurtosis κ =
E[Z4]

E[Z2]2
= E[Z3Z] = E[3Z2] = 3.
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The skewness coefficient measures the asymmetry and indeed is zero for the normal, and
the kurtosis coefficient measures flatness of the tails, usually we are interested in the co-
efficient of excess kurtosis (with respect to the normal case), i.e. κ− 3.

Computing moments and mgf of the standard normal distribution: the mgf is com-
puted as

M(t) =
1√
2π

∫ +∞

−∞
e−

z2

2
+tzdz =

=
1√
2π

∫ +∞

−∞
e−

z2−2tz+t2

2 et
2/2dz =

=
et

2/2

√
2π

∫ +∞

−∞
e−

(z−t)2

2 dz = e
t2

2 .

The Taylor expansion of M(t) is

M(t) = 1 + 0 +
t2

2
+ 0 +

t4

222!
+ . . . =

+∞∑
j=0

t2j

2jj!
=

= 1 + µ1t+ µ2
t2

2!
+ µ3

t3

3!
+ µ4

t4

4!
+ . . . =

+∞∑
r=0

µr
tr

r!
,

hence the moments of Z (which in this case are equal to the central moments) are for
r = 0, 1, 2, . . .

µ2r+1 = E[Z2r+1] = 0,

µ2r = E[Z2r] =
(2r)!

2rr!
.

Gamma: is a family of distributions characterized by parameters α > 0 and θ. We need
the gamma function defined by

Γ(t) =

∫ ∞

0

yt−1e−ydy, for t > 0.

Properties of the gamma function Γ(t) = (t− 1)Γ(t− 1) for t > 1 and Γ(n) = (n− 1)!
for positive integer n. Notation for the gamma distribution; Gamma(α, θ) or G(α, θ).

• f(x) = 1
Γ(α)

θαxα−1e−θx for 0 ≤ x <∞.

• M(t) = 1
(1−t/θ)α for t < θ.

• µ = α/θ, σ2 = α/θ2.
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α is the shape parameter determining if the distribution has a peak or it is monotonically
decreasing, while θ is the scale parameter influencing the spread of the distribution hence
its peak location.

Chi-square: if Zj are independent standard normal, then X =
∑r

j=1 Z
2
j has a chi-square

distribution with r degrees of freedom. Notation χ2
r or χ2(r). Equivalent to a gamma

distribution with α = r/2 and θ = 1/2.

• f(x) = 1
Γ(r/2)2r/2

xr/2−1e−x/2 for 0 ≤ x <∞.

• M(t) = 1
(1−2t)r/2

for t < 1/2.

• µ = r, σ2 = 2r.

Exponential: waiting time between events distributed as Poisson with intensity θ. Nota-
tion Exp(θ) (somewhat ambiguous). Equivalent to a gamma distribution with α = 1.

• f(x) = θe−θx for 0 ≤ x <∞.

• M(t) = θ
θ−t for t < θ.

• µ = 1/θ, σ2 = 1/θ2.

It is a memoryless distribution, indeed if X ∼ Exp(θ), then for integers s > t,

P (X > s|X > t) =
P (X > s ∩X > t)

P (X > t)
=
P (X > s)

P (X > t)

=

∫ +∞
s

θe−xθdx∫ +∞
t

θe−xθdx
= e−(s−t)θ = P (X > s− t).

Example: it is used in modeling survival rates (see below).

Log-normal: it is the distribution of a random variable X such that logX ∼ N(µ, σ2). It
is used for random variables with positive support, and it is very similar to, although less
flexible, and more analytically tractable than the gamma distribution.

• f(x) = 1
σ
√
2π

1
x
e−(log x−µ)2/(2σ2) for 0 < x <∞.

• E[X] = eµ+σ
2/2, Var[X] = e2(µ+σ

2) − e2µ+σ
2 .

Notice that in this case M(t) is not defined (see ex. 2.36 Casella & Berger). Examples
are the distributions of income or consumption. This choice allows to model the logs of
income and consumption by means of the normal distribution which is the distribution
predicted by economic theory.
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7.3 Survival and hazard

Survival function: given a continuous non-negative random variable X , it is the function

F̄ (x) = 1− F (x) = P (X > x).

where x is interpreted as a threshold and we are interested in the probability of having
realizations of X beyond x. We usually assume that F̄ (0) = 1.

In the context of survival analysis the cdf and the pdf are called lifetime distribution func-
tion and event density, respectively.

Hazard function or hazard rate: it is the probability of having a realization of X in a
small interval beyond the threshold x, i.e. conditional on survival of X beyond x:

h(x) = lim
ε→0+

F̄ (x+ ε)− F̄ (x)

εF̄ (x)
= lim

ε→0+

P (X ≤ x+ ε|X > x)

ε
,

it is then defined as

h(x) =
f(x)

F̄ (x)
= − F̄

′(x)

F̄ (x)
.

Its relationship with cdf is:

h(x) = − d

dx
log(1− F (x)), F (x) = 1− exp

(
−
∫ x

0

h(u)du

)
.

Reading

Casella and Berger, Sections 3.1 - 3.2 - 3.3.

8 Multivariate distributions

8.1 Bivariate joint and marginal distributions

For simplicity we first give the definitions for the bivariate case and then we generalise to
the n-dimensional setting.

Joint cumulative distribution function: for two random variables X and Y the joint cdf
is a function FX,Y : R× R → [0, 1] such that

F (x, y) = P (X ≤ x, Y ≤ y).

Properties of joint cdf:
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1. FX,Y (−∞, y) = limx→−∞ FX,Y (x, y) = 0,
FX,Y (x,−∞) = limy→−∞ FX,Y (x, y) = 0,
FX,Y (+∞,+∞) = limx→+∞,y→+∞ FX,Y (x, y) = 1;

2. Right continuous in x: limh→0+ FX,Y (x+ h, y) = FX,Y (x, y),
Right continuous in y: limh→0+ FX,Y (x, y + h) = FX,Y (x, y).

3. For any y, the function F (x, y) is non-decreasing in x.
For any x, the function F (x, y) is non-decreasing in y.

We are interested in the probability thatX and Y take values in a given (Borel !) subset of
the plane R× R ≡ R2. The simplest is a rectangular region A = {(x, y) ∈ R2 s.t. x1 <
x ≤ x2 and y1 < x ≤ y2}. Then

P (A) = P (x1 < X ≤ x2, y1 < Y ≤ y2) =

= FX,Y (x2, y2)− FX,Y (x1, y2)− [FX,Y (x2, y1)− FX,Y (x1, y1)].

Marginal cumulative distribution functions: if FX,Y is the joint distribution function
of X and Y then the marginal cdfs are the usual cdfs of the single random variables and
are given by

FX(x) = lim
y→∞

FX,Y (x, y) = FX,Y (x,∞),

FY (y) = lim
x→∞

FX,Y (x, y) = FX,Y (∞, y).

Marginal cdfs are generated from the joint cdf, but the reverse is not true. The joint cdf
contains information that is not captured in the marginals. In particular it tells us about
the dependence structure among the random variables, i.e. how they are associated.

8.2 Bivariate joint and marginal pmf and pdf

Joint probability mass function: for two discrete random variables X and Y it is a
function fX,Y : R× R → [0, 1] such that

fX,Y (x, y) = P (X = x, Y = y) ∀ x, y ∈ R.

In general

P (x1 < X ≤ x2, y1 < Y ≤ y2) =
∑

x1<x≤x2

∑
y1<y≤y2

fX,Y (x, y).

Marginal probability mass functions: for two discrete random variables X and Y , with
range {x1, x2, . . .} and {y1, y2, . . .} respectively, the marginal pmfs are

fX(x) =
∑

y∈{y1,y2,...}

fX,Y (x, y)

fY (y) =
∑

x∈{x1,x2,...}

fX,Y (x, y).
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Joint probability density function: for two jointly continuous random variables X and
Y , it is an integrable function fX,Y : R× R → [0,+∞) such that

FX,Y (x, y) =

∫ y

−∞

∫ x

−∞
fX,Y (u, v)dudv ∀ x, y ∈ R,

notice that this implies

fX,Y (x, y) =
∂2FX,Y (u, v)

∂u∂v

∣∣∣∣
u=x,v=y

,

Properties of joint pdf:

1. fX,Y (x, y) ≥ 0 for any x, y ∈ R;

2. normalisation: ∫ +∞

−∞

∫ +∞

−∞
fX,Y (x, y)dxdy = 1;

3. probability of a rectangular region:

P (x1 < X ≤ x2, y1 < Y ≤ y2) =

∫ y2

y1

∫ x2

x1

fX,Y (x, y)dxdy;

4. for any (Borel) set B ⊆ R2 the probability that (X, Y ) takes values in B is

P (B) =

∫ ∫
B

fX,Y (x, y)dxdy.

In the one-dimensional case events are usually intervals of R and their probability is pro-
portional to their length, in two-dimensions events are regions of the plane R2 and their
probability is proportional to their area, in three-dimensions events are regions of the
space R3 and their probability is proportional to their volume. Lengths, areas and vol-
umes are weighted by the frequencies of the outcomes which are part of the considered
events hence they are areas, volumes and 4-d volumes under the pdfs. Probability is the
measure of events with respect to the measure of the whole sample space which is 1 by
definition.

Marginal probability density functions: for two jointly continuous random variables X
and Y , they are integrable functions fX : R → [0,+∞) and fY : R → [0,+∞) such that

fX(x) =

∫ +∞

−∞
fX,Y (x, y)dy, ∀ x ∈ R,

fY (y) =

∫ +∞

−∞
fX,Y (x, y)dx, ∀ y ∈ R.

Therefore, the marginal cdfs are

FX(x) =

∫ x

−∞

∫ +∞

−∞
fX,Y (u, y)dydu, ∀ x ∈ R,

FY (y) =

∫ y

−∞

∫ +∞

−∞
fX,Y (x, v)dxdv, ∀ y ∈ R.
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8.3 Cdf, pmf, and pdf of n random variables

Multivariate generalization: for n random variables X1, . . . , Xn we have analogous
definitions:

1. the joint cdf is a function FX1,...,Xn : Rn → [0, 1] such that

FX1,...,Xn(x1, . . . , xn) = P (X1 ≤ x1, . . . Xn ≤ xn);

2. the marginal cdfs are, for any j = 1, . . . , n, the functions

FXj
(xj) = FX1,...,Xn(∞, . . . ,∞, xj,∞, . . . ,∞);

3. the marginal pmf or pdf are, for any j = 1, . . . , n, the functions

fXj
(xj) =


∑

x1
. . .
∑

xj−1

∑
xj+1

. . .
∑

xn
fX1,...,Xn(x1, . . . , xn), discrete case,∫∞

−∞ . . .
∫∞
−∞ fX1,...,Xn(x1, . . . , xn)dx1 . . . dxj−1dxj+1 . . . dxn, continuous case;

4. if g is a well-behaved function g : Rn → R, then

E[g(X1, . . . , Xn)] =


∑

x1
. . .
∑

xn
g(x1, . . . , xn)fX1,...,Xn(x1, . . . , xn), discrete,∫ +∞

−∞ . . .
∫ +∞
−∞ g(x1, . . . , xn)fX1,...,Xn(x1, . . . , xn)dx1 . . . dxn, continuous.

.

Reading

Casella and Berger, Section 4.1.

9 Independence of random variables

9.1 Pairwise independence

Besides the usual univariate measures of location (mean) and scale (variance), in the mul-
tivariate case we are interested in measuring the dependence among random variables.

Joint cdf of independent random variables: two random variables X and Y are inde-
pendent if and only if the events {X ≤ x}, {Y ≤ y} are independent for all choices of x
and y, i.e., for all x, y ∈ R,

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y),

FX,Y (x, y) = FX(x)FY (y).
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Joint pmf or pdf of independent random variables: two random variables X and Y are
independent if and only if, for all x, y ∈ R,

fX,Y = fX(x)fY (y).

The two above are necessary and sufficient conditions, while the following is just neces-
sary conditions but not sufficient (see also below the distinction between independence
and uncorrelation).

Expectation and independence: if X and Y are independent then

E[XY ] = E[X]E[Y ].

Moreover, if g1 and g2 are well-behaved functions then also g1(X) and g2(Y ) are inde-
pendent random variables, hence

E[g1(X)g2(Y )] = E[g1(X)]E[g2(Y )].

9.2 Independence of n random variables

Multivariate generalisation: in the n-dimensional case we have analogous definitions:

1. the random variables X1, X2, . . . , Xn are mutually independent if and only if the
events {X1 ≤ x1}, {X2 ≤ x2}, . . . , {Xn ≤ xn} are independent for all choices of
x1, x2, . . . , xn ∈ R:

FX1,...,Xn(x1, . . . , xn) = FX1(x1)FX2(x2) . . . FXn(xn) =
n∏
j=1

FXj
(xj);

2. X1, X2, . . . , Xn are mutually independent if and only if x1, x2, . . . , xn:

fX1,...,Xn(x1, . . . , xn) = fX1(x1)fX2(x2) . . . fXn(xn) =
n∏
j=1

fXj
(xj).

3. if X1, X2, . . . , Xn are mutually independent then

E[X1, X2, . . . , Xn] = E[X1]E[X2] . . .E[Xn] =
n∏
j=1

E[Xj],

and if g1, g2, . . . , gn are well-behaved functions then also g1(X1), g2(X2), . . . , gn(Xn)
are mutually independent random variables, hence

E[g1(X1)g2(X2) . . . gn(Xn)] = E[g1(X1)]E[g2(X2)] . . .E[gn(Xn)] =
n∏
j=1

E[gj(Xj)].
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9.3 Measures of pairwise dependence

Covariance function: for two random variables X and Y we define

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])],

which is equivalent to

Cov(X, Y ) = E[XY ]− E[X]E[Y ].

Properties of covariance:

1. symmetry: Cov(X, Y ) = Cov(Y,X);

2. bilinearity

Cov(X1+X2, Y1+Y2) = Cov(X1, Y1)+Cov(X1, Y2)+Cov(X2, Y1)+Cov(X2, Y2),

and for any a, b ∈ R
Cov(aX, bY ) = abCov(X, Y );

3. relationship with variance: Var[X] = Cov(X,X),
Var[X + Y ] = Var[X] + Var[Y ] + 2Cov(X, Y ),
Var[X − Y ] = Var[X] + Var[Y ]− 2Cov(X, Y );

4. if X and Y are independent, Cov(X, Y ) = 0.

Correlation coefficient: for random variables X and Y ,

Corr(X, Y ) =
Cov(X, Y )√
Var[X]Var[Y ]

.

Correlation is the degree of linear association between two variables. It is a scaled covari-
ance, |Corr(X, Y )| ≤ 1. Moreover, |Corr(X, Y )| = 1 if and only if there exist numbers
a ̸= 0 and b such that P (Y = aX + b) = 1 ( a linear relation between variables). If
Corr(X, Y ) = 1 then a > 0, if Corr(X, Y ) = −1 then a < 0.

Uncorrelation and independence: Corr(X, Y ) = 0, i.e. X and Y are uncorrelated, if
and only if

E[XY ] = E[X]E[Y ].

This result implies that

X, Y independent ⇒ X, Y uncorrelated.

but not the viceversa. Indeed correlation means only linear dependence.
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Example: we know that independence implies

E[g1(X)g2(Y )] = E[g1(X)]E[g2(Y )].

for any g1, g2 well-behaved functions. Consider the discrete random variables X and Y
such that the joint pmf is

fX,Y (x, y) =


1/4 if x = 0 and y = 1
1/4 if x = 0 and y = −1
1/4 if x = 1 and y = 0
1/4 if x = −1 and y = 0
0 otherwise

Now, E[XY ] = 0 and E[X] = E[Y ] = 0, thus Cov(X, Y ) = 0, the variables are un-
correlated. If we now choose g1(X) = X2 and g2(Y ) = Y 2 we have E[g1(X)g2(Y )] =
E[X2Y 2] = 0, but

E[g1(X)]E[g2(Y )] =
1

2

1

2
=

1

4
̸= 0.

So X and Y are not independent.

Example: suppose X is a standard normal random variable, i.e. with E[Xk] = 0 for
k odd, and let Y = X2. Clearly X and Y are not independent: if you know X , you also
know Y . And if you know Y , you know the absolute value of X . The covariance of X
and Y is

Cov(X, Y ) = E[XY ]− E[X]E[Y ] = E[X3]− 0 · E[Y ] = E[X3] = 0.

Thus Corr(X, Y ) = 0, and we have a situation where the variables are not independent,
yet they have no linear dependence. A linear correlation coefficient does not encapsulate
anything about the quadratic dependence of Y upon X .

10 Multivariate moments

10.1 Joint moments and mgfs for two random variables

Expectation of a function of two random variables: if g is a well-behaved function
g : R × R → R and X and Y are random variables with joint pmf or pdf function fX,Y
then

E[g(X, Y )] =


∑

y

∑
x g(x, y)fX,Y (x, y), discrete case,∫∞

−∞

∫ +∞
−∞ g(x, y)fX,Y (x, y)dxdy, continuous case.

Joint moments: if X and Y are random variables with joint pmf or pdf fX,Y then the
(r, s)th joint moment is

µr,s = E[XrY s] =


∑

y

∑
x x

rysfX,Y (x, y), discrete case,∫ +∞
−∞

∫ +∞
−∞ xrysfX,Y (x, y)dxdy, continuous case.
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Joint central moments: the (r, s)th joint central moment is

mr,s = E[(X − E[X])r(Y − E[Y ])s] =

=


∑

y

∑
x[(x− µX)

r(y − µY )
s]fX,Y (x, y), discrete case,∫ +∞

−∞

∫∞
−∞[(x− µX)

r(y − µY )
s]fX,Y (x, y)dxdy, continuous case.

Properties of joint moments:

1. mean for X: µ1,0 = E[X];

2. rth moment for X: µr,0 = E[Xr];

3. variance for X: m2,0 = E[(X − E[X])2];

4. rth central moment for X: mr,0 = E[(X − E[X])r];

5. covariance: m1,1 = E[(X − E[X])(Y − E[Y ])] = Cov(X, Y );

6. correlation: m1,1/
√
m2,0m0,2 = Corr(X, Y ).

Joint moment generating function: given two random variables X and Y is a function
MX,Y : R× R → [0,+∞) such that

MX,Y (t, u) = E[etX+uY ] =


∑

y

∑
x e

tx+uyfX,Y (x, y), discrete case,∫ +∞
−∞

∫∞
−∞ etx+uyfX,Y (x, y)dxdy, continuous case.

Properties of joint mgfs:

1. Taylor expansion:

MX,Y (t, u) = E

[
+∞∑
i=0

(tX)i

i!

+∞∑
j=0

(uY )j

j!

]
=

+∞∑
i=0

+∞∑
j=0

E[X iY j]
tiuj

i!j!
;

2. the (r, s)th joint moment is the coefficient of trus/(r!s!) in the Taylor expansion;

3. derivatives at zero:

µr,s = E[XrY s] =M
(r,s)
X,Y (0, 0) =

dr+s

dtrdus
MX,Y (t, u)

∣∣∣∣
t=0,u=0

;

4. moment generating function for marginals: MX(t) = E[etX ] =MX,Y (t, 0),
MY (u) = E[euY ] =MX,Y (0, u);

5. if X and Y independent:

MX,Y (t, u) =MX(t)MY (u).

Joint cumulants: let KX,Y (t, u) = logMX,Y (t, u) be the joint cumulant generating func-
tion, then we define the (r, s)th joint cumulant cr,s as the coefficient of (trus)/(r!s!) in the
Taylor expansion of KX,Y . Thus,

Cov(X, Y ) = c1,1 and Corr(X, Y ) =
c1,1√
c2,0c0,2

.
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10.2 Joint moments and mgfs of n random variables

Multivariate generalisation: for random variables X1, . . . , Xn with joint pmf or pdf
fX1,...,Xn:

1. joint moments:

µr1,...,rn =E[Xr1
1 . . . Xrn

n ]

=


∑

x1
. . .
∑

xn
xr11 . . . x

rn
n fX1,...,Xn(x1, . . . , xn), discrete case,∫ +∞

−∞ . . .
∫ +∞
−∞ xr11 . . . x

rn
n fX1,...,Xn(x1, . . . , xn)dx1 . . . dxn, continuous case;

2. joint central moments:

mr1,...,rn = E[(X1 − E[X1])
r1 . . . (Xn − E[Xn])

rn ].

3. joint moment generating function:

MX1,...,Xn(t1, . . . , tn) = E[et1X1+...+tnXn ],

and the coefficient of tr11 . . . t
rn
n /(r1! . . . rn!) in the Taylor expansion of MX1,...,Xn is

E[Xr1
1 . . . Xrn

n ];

4. independence: if X1, . . . , Xn are independent then

MX1,...,Xn(t1, . . . , tn) =MX1(t1) . . .MXn(tn) =
n∏
j=1

MXj
(tj);

5. joint cumulant generating function:

KX1,...,Xn(t1, . . . , tn) = log(MX1,...,Xn(t1, . . . , tn)),

and the (r1, . . . , rn)th joint cumulant is defined as the coefficient of (tr11 . . . t
rn
n )/(r1! . . . rn!)

in the Taylor expansion of KX1,...,Xn .

10.3 Inequalities

Hölder’s inequality: let p and q be two integers such that 1
p
+ 1

q
= 1, if X belongs to Lp

and Y belongs to Lq, then XY belong to L1 and

E[|XY |] ≤ E[|X|p]1/pE[|Y |q]1/q.

Cauchy-Schwarz’s inequality: this is Hölder’s inequality when p = q = 2; if X and Y
belong to L2, then XY belongs to L1 and

E[|XY |] ≤
√

E[X2]E[Y 2].
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As a consequence, if X and Y have variances σ2
X and σ2

Y , then

|Cov(X, Y )| ≤ σXσY ,

which means |Corr(X, Y )| ≤ 1.

Minkowski’s inequality: let p ≥ 1, if X and Y belong to Lp, then X + Y belongs to Lp

and
E[|X + Y |p]1/p ≤ E[|X|p]1/p + E[|Y |p]1/p.

Reading

Casella and Berger, Sections 4.2 - 4.5 - 4.7.

11 Conditional distributions

When we observe more than one random variable their values may be related. By consid-
ering conditional probabilities we can improve our knowledge of a given random variable
by exploiting the information we have about the other.

Conditional cumulative distribution function: given X and Y random variables with
P (X = x) > 0, the distribution of Y conditional (given) to X = x is defined as

FY |X(y|x) = P (Y ≤ y|X = x).

It is a possibly different distribution for every value of X , we have a family of distribu-
tions.

Conditional probability mass function: given X and Y discrete random variables with
P (X = x) > 0, the conditional pmf of Y given X = x is

fY |X(y|x) = P (Y = y|X = x) =
fX,Y (x, y)

fX(x)
,

such that the conditional cdf is

FY |X(y|x) =
∑
yi≤y

fY |X(yi|x).

Conditional probability density function: given X and Y jointly continuous random
variables with fX(x) > 0, the conditional pdf of Y given X = x is

fY |X(y|x) =
fX,Y (x, y)

fX(x)
,
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such that the conditional cdf is

FY |X(y|x) =
∫ y

−∞

fX,Y (x, v)

fX(x)
dv.

Conditional, joint and marginal densities: given fX(x) > 0 we have:

1. conditional pmf or pdf:

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=


fX,Y (x,y)∑
y fX,Y (x,y)

, discrete case,

fX,Y (x,y)∫∞
−∞ fX,Y (x,y)dy

, continuous case;

2. joint pmf or pdf:
fX,Y (x, y) = fY |X(y|x)fX(x);

3. marginal pmf or pdf:

fY (y) =


∑

x fY |X(y|x)fX(x), discrete case,∫∞
−∞ fY |X(y|x)fX(x)dx, continuous case;

4. reverse conditioning (if also fY (y) > 0):

fX|Y (x|y) =
fX,Y (x, y)

fY (x)
=
fX(x)

fY (y)
fY |X(y|x).

These are all direct implications of Bayes’ theorem.

12 Conditional moments and mgfs

Conditional expectation: given X and Y random variables the expectation of Y given
X = x is

E[Y |X = x] =


∑

y yfY |X(y|x), discrete case,∫ +∞
−∞ yfY |X(y|x)dy, continuous case.

If we consider all possible values taken by X then we have a new random variable which
is the conditional expectation of Y given X and it is written as E[Y |X]. It is the best
guess of Y given the knowledge of X . All properties of expectations still hold.

Law of iterated expectations: since E[Y |X] is a random variable we can take its expec-
tation:

E[E[Y |X]] = E[Y ].
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Indeed, in the continuous case

E[E[Y |X]] =

∫ +∞

−∞
E[Y |X = x]fX(x)dx =

=

∫ +∞

−∞

∫ +∞

−∞
y
fX,Y (x, y)

fX(x)
fX(x)dxdy = E[Y ].

A useful consequence is that we can compute E[Y ] without having to refer to the marginal
pmf or pdf of Y :

E[Y ] =


∑

x E[Y |X = x]fX(x), discrete case,∫ +∞
−∞ E[Y |X = x]fX(x)dx, continuous case.

Conditional expectations of function of random variables: if g is a well-behaved, real-
valued function, the expectation of g(Y ) given X = x is defined as:

E[g(Y )|X = x] =


∑

y g(y)fY |X(y|x), discrete case,∫ +∞
−∞ g(y)fY |X(y|x)dy, continuous case.

The conditional expectation of g(Y ) given X is written as E[g(Y )|X] and it is also a ran-
dom variable.

As a consequence any function of X can be treated as constant with respect to expec-
tations conditional on X . In general for well-behaved functions g1 and g2

E[g1(X)g2(Y )|X] = g1(X)E[g2(Y )|X].

Notice that also E[Y |X] is a function of X so

E[E[Y |X]Y |X] = E[Y |X]E[Y |X] = (E[Y |X])2.

Conditional variance: for random variables X and Y , it is defined as

Var[Y |X = x] = E[(Y − E[Y |X = x])2|X = x] =

=


∑

y[y − E[Y |X = x]]2fY |X(y|x), discrete case,∫∞
−∞[y − E[Y |X = x]]2fY |X(y|x)dy, continuous case.

The conditional variance of Y given X is written as Var[Y |X] and it is a random variable
function of X . Moreover,

Var[Y |X] = E[Y 2|X]− (E[Y |X])2,

By using the law of iterated expectations,

Var[Y ] = E[Y 2]− (E[Y ])2 =

= E[E[Y 2|X]]− {E[E[Y |X]]}2 =
= E[Var[Y |X] + (E[Y |X])2]− {E[E[Y |X]]}2

= E[Var[Y |X]] + E[{E[Y |X]}2]− {E[E[Y |X]]}2

= E[Var[Y |X]] + Var[E[Y |X]],
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This result tells us that
Var[Y ] ≥ E[Var[Y |X]],

the expected value of the conditional variance is in general smaller than the uncondi-
tional variance. If X contains useful information for Y then conditioning on X makes
uncertainty about the value of Y smaller. The case in which equality holds is when
Var[E[Y |X]] = 0, i.e. when E[Y |X] is no more random, which is when X contains
no information on Y , i.e. they are independent.

Conditional distributions and independence: if X and Y are independent random vari-
ables then for cdfs we have

FY |X(y|x) = FY (y) ∀ x, y ∈ R,
FX|Y (x|y) = FX(x) ∀ x, y ∈ R.

and for pmfs or pdfs we have

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=
fX(x)fY (y)

fX(x)
= fY (y) ∀ x, y ∈ R,

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=
fX(x)fY (y)

fY (y)
= fX(x) ∀ x, y ∈ R.

Finally,
E[Y |X] = E[Y ].

Conditional moment generating function: given X = x, it is the function defined as

MY |X(u|x) = E[euY |X = x] =


∑

y e
uyfY |X(y|x), discrete case,∫ +∞

−∞ euyfY |X(y|x)dy, continuous case.

This is a conditional expectation so it is a random variable. We can calculate the joint mgf
and marginal mgfs from the conditional mgf,

MX,Y (t, u) = E[etX+uY ] = E[etXMY |X(u|X)],

MY (u) =MX,Y (0, u) = E[MY |X(u|X)].

Example: suppose that X is the number of hurricanes that form in the Atlantic basin
in a given year and Y is the number making landfall. We assume we know that each
hurricane has a probability p of making landfall independent of other hurricanes. If we
know the number of hurricanes that form say x we can view Y as the number of success
in x independent Bernoulli trials, i.e. Y |X = x ∼ Bin(x, p). If we also know that
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X ∼ Pois(λ), then we can compute the distribution of Y (notice that X ≥ Y )

fY (y) =
+∞∑
x=y

fY |X(y|x)fX(x) =

=
+∞∑
x=y

x!

y!(x− y)!
py(1− p)x−y

λxe−λ

x!
=

=
λypye−λ

y!

+∞∑
x=y

[λ(1− p)]x−y

(x− y)!
=

=
λypye−λ

y!

+∞∑
j=0

[λ(1− p)]j

j!
=

=
λypye−λ

y!
eλ(1−p) =

=
(λp)ye−λp

y!
,

thus Y ∼ Poisλp. So E[Y ] = λp and Var[Y ] = λp, but we could find these results without
the need of the marginal pdf. Since Y |X = x ∼ Bin(x, p), then

E[Y |X = x] = Xp Var[Y |X = x] = Xp(1− p)

Since X ∼ Pois(λ), by using the law of iterated expectations, we have

E[Y ] = E[E[Y |X = x]] = E[X]p = λp

and

Var[Y ] = E[Var[Y |X = x]]+Var[E[Y |X = x]] = E[X]p(1−p)+Var[Xp] = λp(1−p)+λp2 = λp.

Alternatively we can use the mgfs, we have

MX(t) = exp{λ(et − 1)} MY |X(u|X) = (1− p+ peu)X ,

therefore

MY (u) = E[MY |X(u|X)] = E[(1− p+ peu)X ] =

= E[exp{X log(1− p+ peu)}] =
= MX(log(1− p+ peu)) =

= exp{λ(1− p+ peu − 1)} =

= exp{λp(eu − 1)},

which is the mgf of a Poisson distribution.
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13 An example of bivariate distribution

Consider the function

fX,Y (x, y) =

{
x+ y if 0 < x < 1 and 0 < y < 1,
0 otherwise.

• It is a valid density, indeed it is a positive real valued function and it is normalized∫ +∞

−∞

∫ +∞

−∞
fX,Y (x, y)dxdy =

∫ 1

0

∫ 1

0

(x+ y)dxdy =

=

∫ 1

0

[
x2

2
+ xy

]1
0

dy =

∫ 1

0

[
1

2
+ y

]
dy =

=

[
y

2
+
y2

2

]1
0

= 1.

• The joint cdf is

FX,Y (x, y) =

∫ y

−∞

∫ x

−∞
fX,Y (u, v)dudv =

=

∫ y

−∞

∫ x

−∞
(u+ v)dudv =

=

∫ y

0

[
x2

2
+ xv

]
dv =

[
x2v

2
+
xv2

2

]1
0

=

=
1

2
xy(x+ y) for 0 < x < 1, 0 < y < 1.

More precisely we have

FX,Y (x, y) =



1
2
xy(x+ y) if 0 < x < 1 and 0 < y < 1,

1
2
x(x+ 1) if 0 < x < 1 and y ≥ 1,

1
2
y(y + 1) if x ≥ 1 and 0 < y < 1,

1 if x ≥ 1 and y ≥ 1,
0 otherwise.

• The marginal pdf of X is

fX(x) =

∫ +∞

−∞
fX,Y (x, y)dy =

=

∫ 1

0

(x+ y)dy = x+
1

2
.

• We can compute probabilities as P (2X < Y ), we first define the event B =
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{(x, y) s.t. 0 < x < y
2
, 0 < y < 1} then

P (2X < Y ) = P (B) =

∫ ∫
B

fX,Y (x, y)dxdy =

=

∫ 1

0

∫ y/2

0

(x+ y)dxdy =

∫ 1

0

[
y2

8
+
y2

2

]
dy =

=

[
y3

24
+
y3

6

]1
0

=
5

24
.

Analogously we could define C = {(x, y) s.t. 0 < x < 1
2
, 2x < y < 1} and

compute P (C).

• the (r, s)th joint moment is

E[XrY s] =

∫ +∞

−∞

∫ +∞

−∞
xrysfX,Y (x, y)dxdy

=

∫ 1

0

∫ 1

0

xrys(x+ y)dxdy =

∫ 1

0

[
1

r + 2
ys +

1

r + 1
ys+1

]
dy =

=

[
1

(r + 2)(s+ 1)
ys+1 +

1

(r + 1)(s+ 2)
ys+2

]1
0

=
1

(r + 2)(s+ 1)
+

1

(r + 1)(s+ 2)
.

Thus, E[XY ] = 1
3
, E[X] = E[Y ] = 7

12
, E[X2] = 5

12
so Var[X] = 11

144
and finally

Cov(X, Y ) = E[XY ]− E[X]E[Y ] =
1

3
− 49

144
= − 1

144
,

and Corr(X, Y ) = − 1
11

, so X and Y are not independent.
We find this result also by noticing that given the marginals and the joint pdfs we
have

fX(x)fY (y) = xy +
x+ y

2
+

1

4
,

therefore fX(x)fY (y) ̸= fX,Y (x, y) so X and Y are not independent.

• The conditional pdf of Y given X = x is

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=

{
x+y

x+ 1
2

if 0 < y < 1

0 otherwise.

• The conditional expectation of Y given X = x is

E[Y |X = x] =

∫ +∞

−∞
yfY |X(y|x)dy =

=

∫ 1

0

y
x+ y

x+ 1
2

dy =

=
1

x+ 1
2

[
xy2

2
+
y3

3

]1
0

=

=
3x+ 2

6x+ 3
.
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• we can use the law of iterated expectations

E[E[Y |X = x]] =

∫ 1

0

3x+ 2

6x+ 3

(
x+

1

2

)
dx =

=
1

6

∫ 1

0

3x+ 2dx

=
1

6

(
3

2
+ 2

)
=

7

12
= E[Y ].

Reading

Casella and Berger, Sections 4.2 - 4.4 - 4.5.

14 Sums of random variables

We start with the bivariate case and then we generalise it to n variables.

Moments of a sum: if X and Y are random variables then:

E[X + Y ] = E[X] + E[Y ], Var[X + Y ] = Var[X] + Var[Y ] + 2Cov(X, Y ),

and, by using the linearity of expectations and the binomial expansion, we have for r ∈ N

E[(X + Y )r] =
r∑
j=0

(
r

j

)
E[XjY r−j].

Probability mass/density function of a sum: ifX and Y are random variables with joint
density fX,Y (x, y) and we define Z = X + Y then the pmf/pdf of Z is

fZ(z) =


∑

u fX,Y (u, z − u), discrete case,∫ +∞
−∞ fX,Y (u, z − u)du, continuous case.

In the continuous case just change variables X = U and Y = Z −U . In the discrete case
notice that

{X + Y = z} =
⋃
u

{X = u ∩ Y = z − u}

and, since this is a sum of disjoint events, for any u, we have

P (X + Y = z) =
∑
u

P (X = u ∩ Y = z − u).
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Probability mass/density function of a sum of independent random variables: if X
and Y are independent random variables and we define Z = X + Y then the pmf/pdf of
Z is

fZ(z) =


∑

u fX(u)fY (z − u), discrete case,∫ +∞
−∞ fX(u)fY (z − u)du, continuous case.

This operation is known as convolution

fZ = fX ∗ fY ⇔
∫ +∞

−∞
fX(u)fY (z − u)du.

Convolution is commutative so fX ∗ fY = fY ∗ fX .

Moment generating function of the sum of independent random variables: if X and
Y are independent random variables and we define Z = X + Y then the mgf of Z is

MZ(t) =MX(t)MY (t),

and the cumulant generating function is

KZ(t) = KX(t) +KY (t).

Example: suppose the X and Y are independent r.v. exponentially distributed, X ∼
Exp(λ) and Y ∼ Exp(θ), with λ ̸= θ, then the pdf of Z = X + Y is

fZ(z) =

∫ +∞

−∞
fX(u)fY (z − u)du =

=

∫ z

0

λe−λuθe−θ(z−u)du =

= λθe−θz
[

−1

λ− θ
e−(λ−θ)u

]z
0

=

=
λθ

λ− θ
(e−θz − e−λz) 0 ≤ z < +∞.

Note the domain of integration [0, z]. Indeed, since both X and Y are positive r.v., also U
and Z − U have to be positive, thus we need 0 < U ≤ Z.
In theory, we could also use mgfs, but in this case we get a function of t that does not
have an expression that resembles one of a known distribution.

Example: suppose theX and Y are independent r.v. normally distributed,X ∼ N(µX , σ
2
X)

and Y ∼ N(µY , σ
2
Y ), then then to compute the pdf of Z = X + Y we use the cumulant

generating functions

KX(t) = µXt+
σ2
Xt

2

2
, KY (t) = µY t+

σ2
Y t

2

2
,

and

KZ(t) = (µX + µY )t+
(σ2

X + σ2
Y )t

2

2
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by uniqueness of cumulant generating functions Z ∼ N(µX + µY , σ
2
X + σ2

Y ).

Multivariate generalization: for n independent random variables X1, . . . , Xn let S =∑n
j=1Xj then

1. the pmf/pdf of S is
fS = fX1 ∗ . . . ∗ fXn ;

2. the mgf of Sis
MS(t) =MX1(t) . . .MXn(t).

3. if X1, . . . , Xn are also identically distributed they have a common mgf MX(t) thus

fS = f ∗ f ∗ . . . ∗ f︸ ︷︷ ︸
n−times

, MS(t) = [MX(t)]
n, KS(t) = nKX(t).

To indicate independent and identically distributed random variables we use the notation
i.i.d.

Example: given n i.i.d. Bernoulli r.v. X1 . . . Xn with probability p and mgf

MX(t) = 1− p+ pet,

the sum S =
∑n

j=1Xj has mgf

MS(t) = (1− p+ pet)n,

thus, by uniqueness of mgf, S ∼ Bin(n, p).

Example: given X1, . . . , Xn independent r.v. normally distributed Xj ∼ N(µj, σ
2
j ) then,

for fixed constants a1, . . . , an and b1, . . . , bn, we have

S =
n∑
j=1

(ajXj + bj) ∼ N

(
n∑
j=1

(ajµj + bj),
n∑
j=1

a2jσ
2
j

)
.

If Xj ∼ iidN(µ, σ2), then

S =
n∑
j=1

Xj ∼ N(nµ, nσ2).

Other examples of sums of independent random variables

1. Poisson:
X ∼ Pois(λ1), Y ∼ Pois(λ2) ⇒ Z ∼ Pois(λ1 + λ2)

Xj ∼ iidPois(λ) ⇒ S ∼ Pois(nλ) j = 1, . . . n;
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2. Gamma:

X ∼ Gamma(r1, θ), Y ∼ Gamma(r2, θ) ⇒ Z ∼ Gamma(r1 + r2, θ)

Xj ∼ iidExp(λ) ⇒ S ∼ Gamma(n, λ) j = 1, . . . n;

3. Binomial:

X ∼ Bin(n1, p), Y ∼ Bin(n2, p) ⇒ Z ∼ Bin(n1 + n2, p)

Xj ∼ iidBin(k, p) ⇒ S ∼ Bin(nk, p) j = 1, . . . n.

14.1 Limit theorems for Bernoulli sums

Assume to observe n independent Bernoulli trialsXi with an unknown probability of suc-
cess p. We study the behaviour of the process Sn =

∑n
i=1Xi which counts the number

of successes in n trials. If Xi ∼ iidBernoulli(p), then Sn ∼ Bin(n, p). For any i we have
that E[Xi] = p and Var[Xi] = p(1− p) so that E[Sn] = np and Var[Sn] = np(1− p).

Law of Large Numbers: there are two forms of this law:

1. Weak Law of Large Numbers: as n→ +∞, Sn/n
m.s.→ p, i.e.

lim
n→+∞

E

[(
Sn
n

− p

)2
]
= 0,

which implies Sn/n
P→ p, i.e.

lim
n→∞

P

(∣∣∣∣Snn − p

∣∣∣∣ < ϵ

)
= 1, ∀ϵ > 0;

2. Strong Law of Large Numbers: as n→ +∞, Sn/n
a.s.→ p, i.e.

P

(
lim
n→∞

∣∣∣∣Snn − p

∣∣∣∣ = 0

)
= 1.

The law establishes the convergence of the empirical average (or sample mean) Sn/n to
the expected value of Xi, i.e. to p (or population mean). It is uesful if we observe many
Bernoulli trials and we want to determine p: it is a first example of inference.

Proof of the weak law: for each n we have

E

[(
Sn
n

− p

)2
]
=

E
[
(Sn − np)2

]
n2

=
Var[Sn]
n2

=
p(1− p)

n
→ 0, as n→ +∞.
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Example: when tossing a coin Xi is 1 if we get head or 0 if we get tail (a Bernoulli trial),
Sn is the number of heads we get in n independent tosses. The frequency of heads will
converge to 1/2 which is the value of p in this particular case.

The following result is a special case of the Central Limit Theorem which we shall
see in due course.

De Moivre-Laplace Limit Theorem: as n→ +∞, and for Z ∼ N(0, 1),

lim
n→∞

P

(
√
n
Sn/n− p√
p(1− p)

≤ α

)
= P (Z ≤ α) =

∫ α

−∞

e−z
2/2

√
2π

dz, ∀α ∈ R,

which implies
√
n
Sn/n− p√
p(1− p)

d→ Z.

We are saying that the sample mean (which is a random variable) of the Bernoulli trials
converges in distribution or is asymptotically distributed as a normal random variable with
mean p (this we know already from the law of large numbers) and variance p(1 − p)/n,
thus the more trials we observe the smaller the uncertainty about the expected value of the
sample mean, the rate of convergence being

√
n. This result contains useful informations

not only on the point-wise estimate of the population mean but also on the uncertainty
and the speed with which we have convergence.

Finally, remember that Sn ∼ Bin(np, np(1− p)), then, by rearranging the terms, we have

Sn − np√
np(1− p)

d→ Z.

i.e. the Binomial distribution can be approximated by a normal distribution with mean np
and variance np(1− p).

Reading

Casella and Berger, Sections 5.2

15 Mixtures and random sums

Hierarchies and mixtures: suppose we are interested in a random variable Y which has
a distribution that depends on another random variables, say X . This is called a hierar-
chical model and Y has a mixture distribution. In the first instance we do not know the
marginal distribution of Y directly, but we know the conditional distribution of Y given
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X = x and the marginal distribution of X (see the example on hurricanes of Section 26).

The key results which are necessary for characterising Y , are

E[Y ] = E[E[Y |X]]

Var = E[Var[Y |X]] + Var[E[Y |X]]

fY (y) = E[fY |X(y|X)] and MY (t) = E[MY |X(t|X)]

Example: Poisson mixing. If Y |Λ = λ ∼ Pois(λ), for some positive r.v. Λ, then

E[Y |Λ] = Var[Y |Λ] = Λ.

Therefore,
E[Y ] = E[Λ], Var[Y ] = E[Λ] + Var[Λ].

Random sums: We consider the case in which X1, X2, . . . is a sequence of independent
identically distributed random variables and Y =

∑N
j=1Xj , where N is also a random

variable which is independent of each Xi. Y is called random sum and can be viewed
as a mixture such that Y |N = n is a sum of random variables, so all results of previous
section still hold.

Conditional results for random sums: suppose that {Xj} is a sequence of i.i.d. random
variables with mean E[X] and variance Var[X], for any j, and suppose that N is a random
variable taking only positive integer values and define Y =

∑N
j=1Xj , then

E[Y |N ] = NE[X],

Var[Y |N ] = NVar[X],

MY |N(t|N) = [MX(t)]
N and KY |N(t|N) = NKX(t).

Marginal results for random sums: suppose that {Xj} is a sequence of i.i.d. random
variables with mean E[X] and variance Var[X], for any j, and suppose that N is a random
variable taking only positive integer values and define Y =

∑N
j=1Xj , then

E[Y ] = E[N ]E[X],

Var[Y ] = E[N ]Var[X] + Var[N ]{E[X]}2,
MY (t) = MN(logMX(t)) and KY (t) = KN(KX(t)).

Example: each year the value of claims made by an owner of a health insurance policy is
distributed exponentially with mean α independent of previous years. At the end of each
year with probability p the individual will cancel her policy. We want the distribution of
the total cost of the health insurance policy for the insurer. The value of claims in year j
is Xj and the number of years in which the policy is held is N , thus

Xj ∼ iidExp

(
1

α

)
, N ∼ Geometric(p).
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The total cost for the insurer is Y =
∑N

j=1Xj . Therefore, E[Y ] = α 1
p
. To get the

distribution we use the cumulant generating function

KX(t) = − log(1− αt), KN(t) = − log

(
1− 1

p
+

1

p
e−t
)
,

and

KY (t) = KN(KX(t)) = − log

(
1− 1

p
+

1

p
(1− αt)

)
= − log

(
1− α

p
t

)
,

by uniqueness we have that Y ∼ Exp
(
p
α

)
.

The Poisson approximation: assume to have Xj ∼ iidBernoulli(p), and N ∼ Pois(λ).
Consider Y =

∑N
j=1Xj , then Y |N = n ∼ Bin(n, p) and

E[Y ] = λE[X],

Var[Y ] = λE[X2],

MY (t) = MN(logMX(t)) = eλ(MX(t)−1),

KS(t) = λ(MX(t)− 1).

By using the mgf of a Bernoulli MX(t) = 1− p+ pet we get

MY (t) = eλ(MX(t)−1) = eλp(e
t−1),

by uniqueness of mgf, Y ∼ Pois(λp) (see the example on hurricanes of Section 26).

Reading

Casella and Berger, Section 4.4

16 Random vectors

This is just a way to simplify notation when we consider n random variables. Expecta-
tions are element wise and we have to remember that the variance of a vector is a matrix.

Random vector: an n-dimensional vector of random variables, i.e. a function

X = (X1, . . . , Xn)
T : Ω → Rn.

The cdf, pmf or pdf, and mgf of a random vector are the joint cdf, pmf or pdf, and mgf of
X1, . . . , Xn so, for any x = (x1, . . . , xn), t = (t1, . . . , tn) ∈ Rn,

FX(x) = FX1,...,Xn(x1, . . . , xn),

fX(x) = fX1,...,Xn(x1, . . . , xn),

MX(t) = MX1,...,Xn(t1, . . . , tn).
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Expectation of a random vector: the expectation of a random vector is a vector of the
expectations, i.e. it is taken element by element

E[X] =

 E[X1]
...

E[Xn]

 .

For jointly continuous random variables we have

E[X] =

∫
Rn

xfX(x)dx =

=

∫ +∞

−∞
. . .

∫ +∞

−∞
x1 . . . xnfX1,...,Xn(x1, . . . , xn)dx1 . . . dxn.

Variance-covariance matrix: given n random variables X1, . . . , Xn we know what is
the variance of each of them and we know the covariance of each couple. All these
informations can be summarized in just one object, defined as

Σ = Var[X] = E[(X− E[X])(X− E[X])T ],

Where X is n × 1 (a column vector), then XT is 1 × n (a row vector), and Σ is a n × n
matrix. Taking element by element expectation of this matrix we get

Σ =


Var[X1] Cov(X1, X2) . . . Cov(X1, Xn)

Cov(X2, X1) Var[X2] . . . Cov(X2, Xn)
...

... . . . ...
Cov(Xn, X1) . . . . . . Var[Xn]

 .

The matrix is symmetric and if the variables are uncorrelated then it is a diagonal matrix.
If the variables are also identically distributed then Σ = σ2In where σ2 is the variance
of each random variable and In is the n-dimensional identity matrix. Finally, as the uni-
varaite variance is always positive, in this case we have that Σ is a non-negative definite
matrix, i.e.

bTΣb ≥ 0 ∀b ∈ Rn.

Example: if N = 2 and assume E[X] = E[Y ] = 0 then

Σ = E
[(

X
Y

)
(X Y )

]
= E

[
X2 XY
Y X Y 2

]
=

(
E[X2] E[XY ]
E[Y X] E[Y 2]

)
=

(
Var[X] Cov(X, Y )

Cov(X, Y ) Var[Y ]

)
.

Conditioning for random vectors: if X and Y are random vectors, and if fX(x) > 0,
we can define the conditional pdf/pmf as

fY|X(y|x) =
fX,Y(x,y)

fX(x)
.

or
fX,Y(x,y) = fY|X(y|x)fX(x).
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Decomposition of probability mass/density function: given an n-dimensional random
vector X and given x ∈ Rn, then

fX(x) = fXn|Xn−1...X1(xn|xn−1 . . . x1)fXn−1|Xn−2...X1(xn−1|xn−2 . . . x1) . . . fX2|X1(x2|x1)fX1(x1) =

=
n∏
j=1

fXj |Xj−1
(xj|xj−1),

where the random vector Xj−1 is the random vector X without its j-th element.

Example: consider 3 r.v. X1, X2 and X3, we can group them in different ways and we
get for example

fX1,X2,X3(x1, x2, x3) = fX3|X1,X2(x3|x1, x2)fX1,X2(x1, x2),

and applying again the definition above to the joint pdf/pmf of X1 and X2 we have

fX1,X2,X3(x1, x2, x3) = fX3|X1,X2(x3|x1, x2)fX2|X1(x2|x1)fX1(x1).

17 Multivariate normal distribution

We start with the bivariate case. We want a bivariate version of the normal distribution.
Given two standard normal random variables, we can build a bivariate normal that de-
pends only on their correlation.

Standard bivariate normal: given U and V i.i.d. standard normal random variables, and
for some number |ρ| < 1, define X = U and Y = ρU +

√
1− ρ2V , then we can prove

that

1. X ∼ N(0, 1) and Y ∼ N(0, 1);

2. Corr(X, Y ) = ρ;

3. the joint pdf is that of a standard bivariate normal random variable and depends
only on the parameter ρ:

fX,Y (x, y) =
1

2π
√

1− ρ2
exp

[
−(x2 − 2ρxy + y2)/(2(1− ρ2))

]
.

The random vector X = (X, Y )T is normally distributed and we write(
X
Y

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
,

or X ∼ N(0,ΣX,Y ) where ΣX,Y is the 2× 2 variance covariance matrix;
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4. the joint mgf is

MX,Y (s, t) = exp
[
1

2
(s2 + 2ρst+ t2)

]
.

Bivariate normal for independent random variables: if the random variables U and V
are independent and standard normal, the joint pdf and mgf are

fU,V (u, v) =
1

2π
e−(u2+v2)/2,

MU,V (s, t) = e(s
2+t2)/2.

The random vector (U, V ) is normally distributed with variance covariance matrix

ΣU,V =

(
1 0
0 1

)
.

Computing the joint pdf: given X = U and Y = ρU +
√

1− ρ2V , we have to compute
fX,Y (x, y) given fU,V (u, v). Given the function h : R2 → R2 such that h(X, Y ) = (U, V )
and the domain of h is C ⊆ R2 and it is in one-to-one correspondence with the support
of (U, V ), we have the rule

fX,Y (x, y) =

{
fU,V (h(x, y))|Jh(x, y)| for (x, y) ∈ C

0 otherwise

where

Jh(x, y) = det

 ∂
∂x
h1(x, y)

∂
∂x
h2(x, y)

∂
∂y
h1(x, y)

∂
∂y
h2(x, y)

 .

In this case, C = R2,

u = h1(x, y) = x, v = h2(x, y) =
y − ρx√
1− ρ2

,

and |Jh(x, y)| = 1√
1−ρ2

, thus

fX,Y (x, y) = fU,V

(
x,

y − ρx√
1− ρ2

)
1√

1− ρ2
.

Generic bivariate normal: if X∗ = µX + σXX and Y ∗ = µY + σY Y then X∗ ∼
N(µX , σ

2
X) and Y ∗ ∼ N(µY , σ

2
Y ) with Corr(X∗, Y ∗) = ρ and the joint pdf is

fX∗,Y ∗(x, y) =
1

σXσY
fX,Y

(
x− µX
σX

,
y − µY
σY

)
.

A generic jointly normal random vector is distributed as(
X∗

Y ∗

)
∼ N

((
µX
µY

)
,

(
σ2
X Cov(X, Y )

Cov(X, Y ) σ2
Y

))
.
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Conditional distribution: of Y ∗ given X∗ is

Y ∗|X∗ = x ∼ N

(
µy + ρ

σY
σX

(x− µX), σ
2
Y (1− ρ2)

)
.

It is obtained by using the joint and the marginal pdfs.

Multivariate case

1. Multivariate normal density: let X1, . . . , Xn be random variables and define the
n × 1 random vector X = (X1, . . . , Xn)

T . If X1, . . . , Xn are jointly normal then
X ∼ N(µ,Σ), where the mean µ = E[X] is an n × 1 vector and the covariance
matrix Σ = Var[X] is an n × n matrix whose (i, j)th entry is Cov(Xi, Xj). The
joint density functions is

fX1,...,Xn(x1, . . . , xn) = fX(x) = (2π)−n/2| detΣ|−1/2e−(x−µ)′Σ−1(x−µ)/2.

2. Conditional expectation for multivariate normal: suppose that X = (X1, . . . , Xn)
T

and Y = (Y1, . . . , Ym)
T , for some integers n and m, and X ∼ N(µX ,ΣX) and

Y ∼ N(µY ,ΣY ) . If, Cov(X,Y) = ΣXY = Σ′
Y X , then

E[Y|X] =µY +ΣY XΣ
−1
X (X− µX),

Var[Y|X] =ΣY −ΣY XΣ
−1
X ΣXY .

Joint normality and independence:

• normally distributed and independent random variables are jointly normally dis-
tributed, however, a pair of jointly normally distributed variables need not be inde-
pendent;

• while it is true that the marginals of a multivariate normal are normal too, it is not
true in general that given two normal random variables their joint distribution is
normal;

• in general, random variables may be uncorrelated but highly dependent, but if a
random vector has a multivariate normal distribution then any two or more of its
components that are uncorrelated are independent, this implies that any two or more
of its components that are pairwise independent are independent;

• it is not true however that two random variables that are marginally normally dis-
tributed and uncorrelated are independent: it is possible for two random variables
to be distributed jointly in such a way that each one alone is marginally normally
distributed, and they are uncorrelated, but they are not independent.

Example: consider X a standard normal random variable and define

Y =

{
X if |X| > c
−X if |X| < c
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where c is a positive number to be specified. If c is very small, thenCorr(X, Y ) ≃ 1;
if c is very large, then Corr(X, Y ) ≃ −1. Since the correlation is a continuous func-
tion of c, there is some particular value of c that makes the correlation 0. That value is
approximately 1.54. In that case, X and Y are uncorrelated, but they are clearly not inde-
pendent, since X completely determines Y . Moreover, Y is normally distributed. Indeed,
its distribution is the same as that of X . We use cdfs:

P (Y ≤ x) = P ((|X| < c ∩ −X < x) ∪ (|X| > c ∩X < x)) =

= P ((|X| < c ∩X > −x)) + P ((|X| > c ∩X < x)) =

= P ((|X| < c ∩X < x)) + P ((|X| > c ∩X < x))

where the last row depends on the fact that for a symmetric distribution P (X < x) =
P (X > −x). Thus, since the events {|X| < c} and {|X| > c} are a partition of the
sample space which is R, then

P (Y ≤ x) = P (X ≤ x),

hence Y is a standard normal random variable too. Finally, notice that the sum X + Y
for c = 1.54 has a substantial probability (about 0.88) of it being equal to 0, whereas
the normal distribution, being a continuous distribution, has no discrete part, i.e., does
not concentrate more than zero probability at any single point. Consequently X and Y
are not jointly normally distributed, even though they are marginally normally distributed.

Reading

Casella and Berger, Definition 4.5.10

18 Bernoulli motivation for the Law of Large Numbers

This section starts off somewhat more abstract but concludes with the most important and
widely-used theorem in probability, the Central Limit Theorem. Along the way we also
state and prove two laws of large numbers.

To get started, as an example, consider a sequence of independent Bernoulli random
variables Xi ∼ X with p = 1/2 and let Yn = 1√

n

∑n
i=1(2Xi − 1). Note that we have nor-

malised the Xi so that E[Yn] = 0 and Var(Yn) = 1. In particular, the mean and variance
of Yn does not depend on n. A gambler could think of Yn as their (rescaled) earnings in
case they win £1 each time a fair coin ends up head and lose £1 each time the coin leads to
tail. Astonishingly, even though Yn is constructed from a humble Bernoulli distribution,
as n gets large, the distribution of Yn approaches that of the normal distribution. Indeed,
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using moment generating functions (and MaX+b(t) = ebtMX(at) for a, b ∈ R), we get

MYn(t) =
(
e−t/

√
nMX(2t/

√
n)
)n

=

(
e−t/

√
n(1− 1

2
+

1

2
e2t/

√
n)

)n
=

(
1

2
e−t/

√
n +

1

2
et/

√
n

)n
→

(
(
1

2
− 1

2
t/
√
n+

1

4
t2/n) + (

1

2
+

1

2
t/
√
n+

1

4
t2/n)

)n
(Taylor)

=

(
(1 +

1

2
t2/n)

)n
→ et

2/2,

which we recognise as the moment generating function of a standard normal distribution.
Since moment generating functions (usually, more on this below) uniquely determine the
distribution, it follows that Yn “converges” to a normally distributed random variable. We
shall see below that there is nothing special here about the Bernoulli distribution as hardly
any distribution (though there are some) can resist the attraction of the normal distribution.
But before we get to that, we first have a closer look at the various kinds of convergence
of random variables and how these notions are related.

19 Modes of convergence

In what follows we consider a sequence of random variables X1, X2, . . . and we consider
four (and there are more!) types of convergence.

The first notion is that of almost sure convergence. Perhaps you find the terminology sur-
prising since in mathematical statements we are used to certainty and almost sure sounds
rather vague (in fact, there is even a notion of vague convergence), but almost sure in the
setting here means that convergence happens on a set with probability 1.

Almost sure convergence: the sequence {Xn} converges to X almost surely if

P

(
ω ∈ Ω : lim

n→+∞
Xn(ω) = X(ω)

)
= 1,

and we use the notation Xn
a.s.→ X .

It means that Xn(ω) converges to X(ω) for all ω ∈ Ω except perhaps for some ω ∈ N
where P (N) = 0.
Note that in the Casella Berger book this is stated in the equivalent form

P
(
lim
n→∞

|Xn −X| < ϵ
)
= 1, ∀ ϵ > 0.
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Note that whenever we write P (A) we should check that A is in our sigma-algebra. In-
deed, with A := {ω : limn→+∞Xn(ω) = X(ω)} we have that ω ∈ A if and only if

∀k ∈ N ∃N ∈ N s.t. ∀n ≥ N |Xn(ω)−X(ω)| < 1

k

and hence

A =
⋂
k∈N

⋃
N∈N

⋂
n≥N

{
ω ∈ Ω : |Xn(ω)−X(ω)| < 1

k

}
is a measurable set (being the countable intersection of a countable union of a countable
intersection of measurable sets!). Useful equivalent definitions are

P (|Xn −X| > ϵ for infinitely many n) = 0 for any ϵ > 0

and

lim
n→∞

P

(
∞⋃
m=n

|Xm −X| > ϵ

)
= 0 for any ϵ > 0.

To see that the latter two definitions are equivalent, first consider an increasing sequence
of events Bn, meaning that Bi ⊂ Bi+1 for each i. Using countable additivity it follows
that (with B0 = ∅)

P

(⋃
n

Bn

)
= P

(⋃
n

(Bn\Bn−1)

)
=
∑
n

P (Bn\Bn−1) = lim
n→∞

P (Bn).

A diagram might help here to see why the above is true and the final equality is an example
of a so-called telescoping series. This is called the continuity property of probability.
Next, note that

⋃∞
m=n{|Xm − X| > ϵ} is a decreasing sequence of sets and by taking

complements equivalence now follows (try filling in the details).

The remaining three modes of convergence are somewhat more straightforward.

Convergence in probability: the sequence {Xn} converges to X in probability if

lim
n→∞

P (|Xn −X| < ϵ) = 1, ∀ ϵ > 0,

and we use the notation Xn
P→ X .

An obviously equivalent definition is

lim
n→∞

P (|Xn −X| > ϵ) = 0, ∀ ϵ > 0.

Mean-square convergence: the sequence {Xn} converges to X in mean-square if

lim
n→∞

E
[
(Xn −X)2

]
= 0,

and we use the notation Xn
m.s.→ X .
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Convergence in distribution: the sequence {Xn} converges to X in distribution if

lim
n→∞

FXn(t) = FX(t),

for any t at which FX is continuous. We use the notation Xn
d→ X .

Relations among the modes of convergence:

1. if Xn
a.s.→ X then Xn

P→ X;

2. if Xn
m.s.→ X then Xn

P→ X;

3. if Xn
P→ X then Xn

d→ X .

Proof:

1. If Xn converges to X almost surely, this means that for any ϵ > 0

lim
n→∞

P

(
∞⋃
m=n

|Xm −X| > ϵ

)
= 0.

Since {|Xn −X| > ϵ} ⊂
⋃∞
m=n{|Xm −X| > ϵ} it follows that

lim
n→∞

P (|Xn −X| > ϵ) = 0,

so Xn converges to X in probability.

2. From Chebyshev’s inequality we know that for any ϵ > 0

P (|Xn −X| > ϵ) ≤ E[(Xn −X)2]

ϵ2
→ 0

as n → ∞ and hence mean-square convergence indeed implies convergence in
probability.

3. Suppose for simplicity that Xn and X are continuous random variables and assume
that Xn

P→ X . From the bounds

P (X ≤ t− ϵ) ≤ P (Xn ≤ t) + P (|Xn −X| ≥ ϵ)

and
P (Xn ≤ t) ≤ P (X ≤ t+ ϵ) + P (|Xn −X| ≥ ϵ)

it follows by letting ϵ > 0 arbitrarily small that

P (Xn ≤ t) → P (X ≤ t) as n→ ∞.

This argument can be adapted to the case whenXn orX are not continuous random
variables as long as t is a point of continuity of FX .

Note that it follows that convergence in distribution is implied by any of the other modes
of convergence. None of the other implications hold in general. For some of the examples
and also for the proof of (a special case of) the Strong Law of Large Numbers the so-called
Borel Cantelli Lemmas are incredibly useful.
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19.1 Borel Cantelli Lemmas

The Borel Cantelli Lemmas are two fundamental lemmas in probability theory. Let An
be a sequence of events and denote by A := ∩n ∪∞

m=n Am the event that infinitely many
of the An occur. The Borel Cantelli Lemmas give sufficient conditions on the An under
which either P (A) = 0 or P (A) = 1.

Borel Cantelli 1: Suppose
∑∞

n=1 P (An) <∞. Then P (A) = 0.

Proof: Note that since by definition A ⊂ ∪∞
m=nAm for each n, it follows that

P (A) ≤ P (
∞⋃
m=n

Am) ≤
∞∑
m=n

P (Am) → 0 as n→ ∞

since
∑∞

n=1 P (An) <∞.

Borel Cantelli 2 Suppose that A1, A2, . . . are independent and
∑∞

n=1 P (An) = ∞. Then
P (A) = 1.

Proof: It suffices to show that P (Ac) = 0. Note that

P (Ac) = P

(⋃
n

∞⋂
m=n

Acm

)

= lim
n→∞

P

(
∞⋂
m=n

Acm

)
(as
⋂∞
m=nA

c
m is increasing in n)

= lim
n→∞

∞∏
m=n

(1− P (Am)) (independence)

≤ lim
n→∞

∞∏
m=n

e−P (Am) (since 1− x ≤ e−x)

= lim
n→∞

e−
∑∞

m=n P (Am)

= 0

whenever
∑∞

n=1 P (An) = ∞.

19.2 Examples of various modes of convergence

Example “in probability” does not imply “almost surely”

Let Xn be independent Bernoulli random variables with parameter p = 1/n. Then it
obviously holds that Xn

P→ 0 since P (|Xn − 0| > ϵ) = P (Xn = 1) = 1/n → 0
as n → ∞. You may find it surprising (at least upon first reading) that Xn does not
converge to 0 almost surely. Indeed, considering An := {Xn = 1} it holds that

∞∑
n=1

P (An) =
∞∑
n=1

1

n
= ∞
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as the harmonic series diverges3. Now, from the second Borel Cantelli Lemma it follows
that P (Xn = 1 for infinitely many n) = 1, so Xn does not converge to 0 almost surely.

Example “square mean” does not imply “almost surely”

Let Xn be defined as in the previous example. Then

E[(Xn − 0)2] =
1

n
→ 0

as n→ ∞, so Xn converges in mean square to 0 but not almost surely.

Example “in probability” does not imply “square mean”

Convergence in probability only means that the probability that Xn and X differ by at
most ϵ > 0 goes to zero as n → ∞, and, in particular, it does not lead to any restriction
on the values of Xn when it is not close to X . Take for example Xn = 0 with p = 1−1/n

and Xn = n with p = 1/n. Again, it holds that have that Xn
P→ 0. However, since

E[(Xn − 0)2] =
n2

n
= n

does not converge to zero, the random variables Xn do not converge to 0 in square mean.

Example “almost surely” does not imply “square mean”

If we tweak Xn and define the sequence now with P (Xn = 0) = 1− 1/n2 and P (Xn =
n) = 1/n2 we have that for any ϵ > 0

P (|Xn − 0| > ϵ) =
1

n2
.

Since
∑∞

n=1 n
−2 < ∞, (in fact4, it is π2/6), it now follows from the first Borel Cantelli

Lemma that

P (|Xn − 0| > ϵ for infinitely many n) = 0 for any ϵ > 0,

or equivalently, Xn
a.s.→ 0. On the other hand,

E[(Xn − 0)2] = n2/n2 = 1

and so Xn does not converge to 0 in mean square.

Example “in distribution” does not imply anything

Let Z be a standard normal random variable and let Xn = (−1)nZ. Than Xn converges
in distribution to Z but does not converge in any of the other three modes.

Example “almost surely” implies “in probability”
3for example, this follows form the fact that the harmonic series 1 + 1/2 + (1/3 + 1/4) + (1/5 +

1/6 + 1/7 + 1/8) + . . . has a lower bound 1 + 1/2 + (1/4 + 1/4) + (1/8 + 1/8 + 1/8 + 1/8) + . . . =
1 + 1/2 + 1/2 + 1/2 + . . . = ∞

4for various proofs of this surprising result see http://empslocal.ex.ac.uk/people/
staff/rjchapma/etc/zeta2.pdf
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Consider Xn and X ∼ U [0, 1] such that Xn(ω) = ω + ωn and X(ω) = ω for any
ω ∈ [0, 1]. Then if ω ∈ [0, 1) we have ωn → 0 and so Xn(ω) → X(ω) = ω. When
ω = 1 we have Xn(1) = 2 but X(1) = 1. However, the set in which we have problems is
A = {ω s.t. ω = 1} and we have

P (A) = 1−P (Ac) = 1−P ({ω s.t. ω ∈ [0, 1)}) = 1−[FX(1)−FX(0)] = 1−[1−0] = 0.

We have also convergence in probability. We can write Xn = X +Xn, then

P (|Xn −X| > ϵ) = P (|Xn| > ϵ) =

= P (Xn < −ϵ ∪Xn > ϵ) =

= P (X < −ϵ1/n ∪X > ϵ1/n) =

→ P (X < −1 ∪X > 1) = 0.

Example “in probability” does not imply “almost surely”

Consider Xn and X ∼ U [0, 1] such that

X1(ω) = ω + I[0,1](ω),

X2(ω) = ω + I[0,1/2](ω),

X3(ω) = ω + I[1/2,1](ω),

X4(ω) = ω + I[0,1/3](ω),

X5(ω) = ω + I[1/3,2/3](ω),

X6(ω) = ω + I[2/3,1](ω).

Define also X(ω) = ω. Let’s compute the probability limit

P (|Xn −X| > ϵ) = P (X + Iδn −X > ϵ) → 0,

since δn is an interval that becomes smaller and smaller as n → ∞. Then Xn → X in
probability. However, for any ω we have an n such that Xn(ω) = ω, Xn+1(ω) = ω + 1,
and Xn+2(ω) = ω. Therefore the set of outcomes such that Xn does not converge to X is
the whole sample space [0, 1] which implies that no almost sure convergence exists.

Example “in probability” implies “in distribution”

Convergence in probability implies convergence in distribution. Assume that Xn ∼
U [0, 1] and are i.i.d. such that Xn = max1≤i≤nXi. We prove that Xn converges in
probability to the random variable X = 1.

P (|Xn − 1| > ϵ) = P (Xn − 1 > ϵ ∪Xn − 1 < −ϵ) =
= P (Xn > ϵ+ 1) + P (Xn < 1− ϵ) =

= 0 + P (⋒ni=1Xi < 1− ϵ) =

=
n∏
i=1

P (Xi < 1− ϵ) =

= (1− ϵ)n → 0.
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Then consider ϵ = t/n

P (Xn ≤ 1− t/n) = (1− t/n)n → e−t,

therefore
P (Xn ≥ 1− t/n) = P (n(1−Xn) ≤ t) → 1− e−t,

which is a cdf of an Exponential r.v. thus, n(1−Xn) ∼ Exp(1).

Example “in distribution” and continuity of cdf

Define Xn ∼ U [1/2− 1/n, 1/2 + 1/n] then as n → ∞, Xn → X = 1/2 in distribution,
where the limiting r.v. is a degenerate r.v. with all its mass in 1/2. We have

FXn(t) =

{
0 t ≤ 1/2− 1/n or t ≥ 1/2 + 1/n
t−(1/2−1/n)

2/n
t ∈ [1/2− 1/n, 1/2 + 1/n].

As n → ∞ the cdf converges to FXn(1/2) = 1/2, however the limiting r.v. has cdf
FX(1/2) = 1 as all the mass of X is in t = 1/2. So in t = 1/2 the cdf of Xn does not
converge to the cdf of X . However, t = 1/2 is a point where FX is not continuous, thus
we still have convergence in distribution.

20 Two Laws of Large Numbers

Let X1, X2, . . . be a sequence of independent identically distributed random variables
with moments E[Xi] = µ and Var[Xi] = σ2, such that σ2 < ∞, for all i. We define
Sn =

∑n
i=1Xi and Sn/n is the sample mean (a random variable). Then we have two

results.

Weak Law of Large Numbers:

lim
n→∞

P

(∣∣∣∣Snn − µ

∣∣∣∣ < ϵ

)
= 1, ∀ϵ > 0

that is Sn/n
P→ µ.

Proof: for every ϵ > 0, we use Chebychev’s inequality

P (|Sn/n− µ| > ϵ) ≤ E[(Sn/n− µ)2]

ϵ2
=

Var[Sn/n]
ϵ2

=
Var[Sn]
n2ϵ2

=
σ2

nϵ2

which converges to 0 as n goes to ∞.

Whereas the weak law of large numbers numbers is straightforward to prove, perhaps not
surprisingly the strong law of large numbers requires some more effort.

Strong Law of Large Numbers:

P

(
lim
n→∞

∣∣∣∣Snn − µ

∣∣∣∣ = 0

)
= 1,
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that is Sn/n
a.s.→ µ.

Proof: Here we give the proof in the case that we have the additional assumption that
E[X4

i ] <∞. In that case, note that

E[(Sn/n− µ)4] =
1

n4
E

( n∑
i=1

(Xi − µ)

)4
 .

Note that this is a rather humongous sum. Justify (exercise) that it is equal to

1

n4

{
nE[(X − µ)4] + 3n(n− 1)

(
E
[
(X − µ)2

])2}
.

Note that this expression can be bounded byCn−2 for someC > 0 which does not depend
on n. Using Chebyshev’s inequality with g(x) = x4 we have that for ϵ > 0

P (|Sn/n− µ| ≥ ϵ) ≤ E[(Sn/n− µ)4]

ϵ4
≤ C

ϵ4n2
.

Since 1/n2 is summable we deduce from Borel Cantelli 1 that Sn/n
a.s.→ µ. (to see why,

reconsider the example above of almost sure convergence but not convergence in mean
square).

On the assumptions: for the proof of weak and strong law above we have used the
assumption of finite second and fourth moment, respectively. This is in fact stronger than
what is needed. A sufficient condition is the weaker assumption E[|X|] < ∞ ; the proof
is much more demanding though.

The Strong Law of Large Numbers implies the Weak Law of Large Numbers and also
convergence in distribution Sn/n

d→ µ which can be interpreted as convergence to the
degenerate distribution with all of the mass concentrated at the single value µ. We shall
soon see that, just as in the case of the sum of Bernoulli random variables at the begin-
ning, we can say a lot more about the limiting distribution of Sn by proper rescaling. To
be more specific, since Sn/n − µ converges to zero and since Var(Sn/n − µ) = 1/n, a
scaling with factor

√
n, i.e.

√
n(Sn/n − µ) seems promising. This is the subject of the

next section.

21 Central Limit Theorem

In this section we state and prove the fundamental result in probability and statistics,
namely that the normalised sample mean from an i.i.d. sample (with finite variance)
converges to a standard normal distribution. We shall make use of moment generating
functions and the following result from the theory of so-called Laplace transforms.

66



Convergence of mgfs (Theorem 2.3.12 in Casella Berger) If Xn is a sequence of ran-
dom varaibles with a moment generating functions satisfying

lim
n→∞

MXn(t) =MX(t)

for all t in a neighbourhood of 0 and if MX(t) is a moment generating function of a
random variable X , then Xn

d→ X .

Assumptions: given an i.i.d. sequence of random variables X1, X2, . . . with finite vari-
ance σ2 > 0, define Sn =

∑n
i=1Xi.

Central Limit Theorem: if the mgfMX(t) ofXi exists in some neighborhood of 0, then,
as n→ +∞, and for Z ∼ N(0, 1),

√
n
Sn/n− µ

σ
=
Sn − nµ√

nσ

d→ Z.

We can state the convergence in distribution as

P

(√
n
Sn/n− µ

σ
≤ α

)
→
∫ α

−∞

e−z
2/2

√
2π

dz, ∀α ∈ R.

Notice that both µ and σ2 exist and are finite since the mgf exists in a neighbourhood of
0.

Proof: Define Yi = (Xi − µ)/σ, then

√
n
Sn/n− µ

σ
=

1√
n

n∑
i=1

Yi

therefore the mgf of Yi exists for t in some neighbourhood of 0 (and we shall take t
sufficiently small from now on), given that Yi are i.i.d.

M√
nσ−1(Sn/n−µ)(t) = Mn−1/2

∑n
i=1 Yi

(t) =

=
(
E
[
exp

(
tYi/

√
n
)])n

=

=

(
MYi

(
t√
n

))n
.

By expanding in Taylor series around t = 0, we have

MYi

(
t√
n

)
=

∞∑
k=0

E[Y k
i ]

(t/
√
n)k

k!
.

Now notice that E[Yi] = 0 and Var[Yi] = 1 for any i, thus

MYi

(
t√
n

)
= 1 +

(t/
√
n)2

2
+ o

[(
t√
n

)2
]
,
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where the last term is the remainder term in the Taylor expansion such that

lim
n→∞

o[(t/
√
n)2]

(t/
√
n)2

= 0.

Since t is fixed we also have

lim
n→∞

o[(t/
√
n)2]

(1/
√
n)2

= lim
n→∞

n o

[(
t√
n

)2
]
= 0,

thus

lim
n→∞

M√
nσ−1(Sn/n−µ)(t) = lim

n→∞

[
MYi

(
t√
n

)]n
=

= lim
n→∞

{
1 +

1

n

(
t2

2
+ n o

[(
t√
n

)2
])}n

= et
2/2,

which is the mgf of a standard normal random variable. Therefore, by uniqueness of the
moment generating function,

√
n(Sn/n − µ)/σ converges in distribution to a standard

normal random variable.

On the assumptions:

1. we can relax the assumption of finite variances, it is enough to haveXi that are small
with respect to Sn; this can be assured by imposing two conditions by Lyapunov
and Lindeberg of asymptotic negligibility;

2. Independence can also be relaxed by asking for asymptotic independence.

3. The assumption on the existence on moment generating functions can be dropped
and a similar proof can be given in terms of the so-called characteristic function.
This is defined similarly to the moment generating function by

Φ(t) := E[eitX ] for t ∈ R.

Here i =
√
−1 and eix = cos(x) + i sin(x) for x ∈ R. The advantage of the

characteristic function over the moment generating function is that the former al-
ways exists. This is due to the property that |eix| = cos2(x) + sin2(x) = 1 and
hence Φ(t) ≤ 1. Characteristic functions also uniquely determine distributions and
there is a convergence result equivalent to the one above for moment generating
functions. Once you have calculated the moment generating functions, it is usually
straightforward to find the characteristic function. For example, if X is standard
normal, then

ΦX(t) = E[eitX ] = e(it)
2/2 = e−t

2/2.

Reading

Casella and Berger, Sections 5.5
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22 Properties of a Random Sample

A description of a statistical analysis may be described as follows:

1. Consider a real-world phenomenon/problem/population with uncertainty and open
questions.

2. Probability model: Identify the random variable(s) associated with the problem and
assign a suitable probability model. The model is described by some parameter(s)
θ.

3. Draw a sample from the population.

4. Use the information contained in the sample to draw inference, that is gain knowl-
edge for the population parameters θ and provide answers to the questions.

In this course we are concerned with parts 3 and 4.

22.1 Random Sample

A sample is a collection of random variables X = (X1, X2, . . . , Xn). An observed sam-
ple is a collection of observations (x1, x2, . . . , xn) on (X1, X2, . . . , Xn).

Let X1, X2, . . . , Xn be independent and identically distributed (i.i.d.) random variables
each with pdf or pmf f(xi|θ). Then X1, X2, . . . , Xn are called a random sample of size
n from population f(xi|θ).

• A random sample of size n implies a particular probability model described by the
population f(xi|θ), that is by the marginal pdf or pmf of each Xi. Notice that it de-
pends on some parameter θ, and if we know θ then the model would be completely
specified. However, θ is in general unknown and it is the object we are interested in
estimating. For this reason we highlight the dependence on θ when indicating the
pdf or pmf.

• The random sampling model describes an experiment where the variable of interest
has a probability distribution described by f(xi|θ).

• Each Xi is an observation of the same variable.

• Each Xi has a marginal distribution given by f(xi|θ).

• The joint pdf or pmf is given by

fX(x|θ) ≡ fX1,X2,...,Xn(x1, x2, . . . , xn|θ) = f(x1|θ)f(x2|θ) . . . f(xn|θ) =
n∏
i=1

f(xi|θ)
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Example

• Poisson:

P (X1 = x1, X2 = x2, . . . , Xn = xn|λ) =
n∏
i=1

e−λλxi

xi!
=
e−nλλ

∑n
i=1 xi∏n

i=1 xi!

• Exponential:

fX1,X2,...,Xn(x1, x2, . . . , xn|λ) =
n∏
i=1

1

λ
e−xi/λ =

1

λn
e−

∑n
i=1 xi/λ

22.2 Statistics

Let T (x1, x2, . . . , xn) be a real or vector valued function whose domain includes the sam-
ple space ofX1, X2, . . . , Xn. Then the random variable Y = T (X1, X2, . . . , Xn) is called
a statistic.

• Inferential questions are hard to answer just by looking at the raw data.

• Statistics provide summaries of the information in the random sample.

• They could be arbitrary functions but they cannot be functions of parameters.

The following are three statistics often used

• The sample mean

X̄ =
X1 +X2 + · · ·+Xn

n
=

1

n

n∑
i=1

Xi.

• The sample variance

S2 =
1

n− 1

n∑
i−1

(
Xi − X̄

)2
.

• The sample standard deviation S =
√
S2.

Notice that these are random variables and we denote their observed values as x̄, s2, s.

Lemma Let X1, X2, . . . , Xn be a random sample from a population and let g(x) be a
function such that E[g(X1)] and Var(g(X1)) exist. Then,

E

(
n∑
i=1

g(Xi)

)
= nE [g(X1)]
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and

Var

(
n∑
i=1

g(Xi)

)
= nVar [g(X1)] .

Theorem Let X1, X2, . . . , Xn be a random sample from a population with mean µ and
variance σ2 <∞. Then

1. E(X̄) = µ,

2. Var(X̄) = σ2

n
,

3. E(S2) = σ2.

As we will see later in detail we say that X̄ and S2 are unbiased estimators of µ and σ2

respectively.

22.3 Sampling Distribution

The probability distribution of a statistic T = T (X) is called the sampling distribution
of T .

Theorem Let X1, X2, . . . , Xn be a random sample from a population with mgf MXi
(t).

Then the mgf of the sample mean is

MX̄(t) = [MXi
(t/n)]n .

When applicable, the theorem above provides a very convenient way for deriving the sam-
pling distribution.

Example

• X1, . . . , Xn i.i.d. from N(µ, σ2), then

MX̄(t) =

[
exp

(
µ
t

n
+
σ2(t/n)2

2

)]n
= exp

(
µt+

(σ2/n)t2

2

)
that is X̄ ∼ N

(
µ, σ

2

n

)
.

• X1, . . . , Xn i.i.d. from Gamma(α, β), then X̄ ∼ Gamma(nα, β/n).

If we cannot use the above theorem we can derive the distribution of the transformation
of random variables by working directly with pdfs.
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22.4 Transformation of Random Variables

22.4.1 Transformation of Scalar Random Variables

Theorem: Let X ,Y be random variables with pdfs fX(x), fY (y) and defined for x ∈ X
and y ∈ Y , respectively. Suppose that g(·) is a monotone function such that g : X → Y
and g−1(·) has a continuous derivative on Y . The pdf of Y is then

fY (y) =

{
fX(g

−1(y))
∣∣∣ ddyg−1(y)

∣∣∣ , y ∈ Y ,
0, otherwise.

Proof: Let X be a random variable with density fX(x) and Y = g(X) or X = g−1(Y ).
If g−1(·) is increasing

FY (y) = P (Y ≤ y) = P (g−1(Y ) ≤ g−1(y)),

= P (X ≤ g−1(y)) = FX(g
−1(y)),

fY (y) =
d

dy
FY (y) =

d

dy
FX(g

−1(y)) = fX(g
−1(y))

dg−1(y)

dy

If g−1(·) is decreasing

FY (y) = P (Y ≤ y) = P (g−1(Y ) ≥ g−1(y)),

= P (X ≥ g−1(y)) = 1− FX(g
−1(y)),

fY (y) = − d

dy
FX(g

−1(y)) = fX(g
−1(y))

[
−dg

−1(y)

dy

]
(The derivative of a decreasing function is negative)
Putting both cases together if g−1(.) is monotone

fY (y) = fX(g
−1(y))

∣∣∣∣dg−1(y)

dy

∣∣∣∣
Example: Inverse Gamma Distribution. Let X ∼ Gamma(α, β),

fX(x|α, β) =
xα−1 exp

(
−x
β

)
Γ(α)βα

, 0 < x <∞,

We want the distribution of Y = 1/X , therefore g(x) = 1/x and g−1(y) = 1/y. Then,
d
dy
g−1(y) = −1/y2. We can therefore write

fY (y) = fX(g
−1(y))

∣∣∣∣dg−1(y)

dy

∣∣∣∣ =
(

1
y

)α−1

exp
(
− 1
yβ

)
Γ(α)βα

1

y2
,

=

(
1
y

)α+1

exp
(
− 1
yβ

)
Γ(α)βα

, 0 < y <∞.
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Square Transformations: What if g(·) is not monotone? For example consider Y = X2,
then g−1(y) =

√
y and clearly FY (y) = P(X ≤ √

y) is not defined if y < 0. For y ≥ 0

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (−√
y ≤ X ≤ √

y),

= FX(
√
y)− FX(−

√
y)

fY (y) =
d

dy
FY (y) =

d

dy
[FX(

√
y)− FX(−

√
y)],

=
1

2
√
y
fX(

√
y) +

1

2
√
y
fX(−

√
y), if y ≥ 0.

Example: χ2 distribution from standard Normal.

Let X ∼ N(0, 1), and consider Y = X2. Using the previous result we get

fY (y) =
1

2
√
y

1√
2π

exp(−√
y2/2) +

1

2
√
y

1√
2π

exp(−(−√
y)2/2),

=
1√
2πy

exp
(
−y
2

)
Note that

fY (y) =
1

Γ(1
2
)2

1
2

y
1
2
−1 exp

(
−y
2

)
,

which is the pdf of a Gamma
(
1
2
, 2
)

distribution, or else a χ2 distribution with one degree
of freedom.

22.4.2 Transformations of Multivariate Random Variables

Let X = (X1, . . . , Xd)
′ be d-dimensional random variable and Y = (Y1, . . . , Yd)

′ =
g(X) so that X = g−1(Y), or else

X1 = g−1
1 (Y1, . . . , Yd),

X2 = g−1
2 (Y1, . . . , Yd),

...

Xd = g−1
d (Y1, . . . , Yd).

The transformation g : X ⊂ Rd → Y ⊂ Rd from X to Y has to be one-to-one.
Consider the matrix with the partial derivatives

∂g−1(Y1, . . . , Yn)

∂(Y1, . . . , Yn)
=


∂g−1

1 (Y )

∂Y1

∂g−1
1 (Y )

∂Y2
. . .

∂g−1
1 (Y )

∂Yd
∂g−1

2 (Y )

∂Y1

∂g−1
2 (Y )

∂Y2
. . .

∂g−1
2 (Y )

∂Yd...
... . . .

...
∂g−1

d (Y )

∂Y1

∂g−1
d (Y )

∂Y2
. . .

∂g−1
d (Y )

∂Yd


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The Jacobian, J of the transformation g(·) is the determinant of the matrix of derivatives
above. It provides a scaling factor for the change of volume under the transformation.

Formula for multivariate transformations:

Using standard change of variables results from multivariate calculus, we get

fY1,...,Yd(y1, . . . , yd) = fX1,...,Xd

(
g−1
1 (Y), . . . , g−1

d (Y)
)
|J|

Theorem: If X , Y are independent random variables with pdfs fX(x) and fY (y), the pdf
of Z = X + Y is

fZ(z) =

∫ −∞

−∞
fX(w)fY (z − w)dw

This formula for fZ(z) is called the convolution of fX(x) and fY (y).

Proof (of the convolution expression): We introduce an extra random variable W = X
so that

Z = X + Y, and W = X or

X = W, and Y = Z −W.

The Jacobian is equal to 1. Since X, Y are independent their joint pdf is fXY (x, y) =
fX(x)fY (y). We can now write

fZW (z, w) = fXY (w, z − w)× 1 = fX(w)fY (z − w)

Finally,

fZ(z) =

∫ +∞

−∞
fZW (z, w)dw =

∫ +∞

−∞
fX(w)fY (z − w)dw

Example: If X and Y are independent and identically distributed exponential random
variables, find the joint density function of U = X/Y and V = X + Y .
For U = X/Y, V = X + Y , the inverse transformation is X = UV/(1 + U), Y =
V/(1 + U). We have

∂X

∂U
= V/(1 + U)2,

∂X

∂V
= U/(1 + U),

∂Y

∂U
= −V/(1 + U)2,

∂Y

∂V
= 1/(1 + U).

The Jacobian is∣∣∣∣ V/(1 + U)2 U/(1 + U)
−V/(1 + U)2 1/(1 + U)

∣∣∣∣ = V (1 + U)/(1 + U)3 = V/(1 + U)2

which is non-negative for U, V ≥ 0.
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For U, V > 0 the joint density is therefore

fU,V (u, v) = fX,Y (x, y)v/(1 + u)2 = λ2e−λ(x+y)v/(1 + u)2 = λ2ve−λv/(1 + u)2.

The joint density factorises into a marginal density for V , which is Gamma with a scale
parameter λ and a shape parameter 2, and a Pareto density 1/(1 + u)2 for U . So U and V
are independent.

22.5 Sampling from the Normal distribution

Theorem Let X1, X2, . . . , Xn be a random sample from a N(µ, σ2) distribution.

1. X̄ and S2 are independent random variables.

2. X̄ has a N
(
µ, σ

2

n

)
distribution.

3. (n− 1)S2/σ2 has chi squared distribution with n− 1 degrees of freedom (χ2
n−1).

22.5.1 Chi-squared distribution

1. A χ2
p distribution is a Gamma(p/2, 2) distribution. Its pdf is

f(y) =
1

Γ(p/2)2p/2
y(p/2)−1e−y/2, x > 0.

2. If Z is a N(0, 1) random variable, then Z2 ∼ χ2
1.

3. If X1, X2, . . . , Xn are independent and Xi ∼ χ2
pi

, then

X1 +X2 + · · ·+Xn ∼ χ2
p1+···+pn

4. Let X be distributed according to a χ2
p. Then E(X) = p and, for p > 2, E( 1

X
) =

1/(p− 2).

22.5.2 Student’s t distribution

Let X1, X2, . . . , Xn be a random sample from a N(µ, σ2) distribution. We know

X̄ − µ

σ/
√
n

∼ N(0, 1).
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But σ2 is usually unknown. It would be most useful if we knew the distribution of the
statistic

T =
X̄ − µ

S/
√
n
.

The distribution of T is known as the t distribution with n− 1 degrees of freedom. Note
that

T =
X̄ − µ

S/
√
n

=
(X̄ − µ)/(σ/

√
n)√

S2/σ2
=

Z√
V/(n− 1)

,

where Z ∼ N(0, 1), V ∼ χ2
n−1, and Z, V are independent because of the above theorem.

Example Let Y be a random variable distributed according to Student’s t distribution
with p degrees of freedom. Show that

1. The pdf of Y is

fY (y) =
(2π)−1/22−p/2p−1/2

Γ(p/2)
Γ

(
p+ 1

2

)[
2

1 + y2/p

](p+1)/2

2. E(Y ) = 0, if p > 1.

3. Var(Y ) = p/(p− 2), if p > 2.

22.5.3 Snedecor’s F distribution

LetX1, X2, . . . , Xn be a random sample from aN(µx, σ
2
x) population, and Y1, Y2, . . . , Ym

be a random sample from a N(µy, σ
2
y) population. Suppose that we want to compare the

variability between the two populations. This can be done through the variance ratio
σ2
x/σ

2
y but since these are unknown we can use S2

x/S
2
y . The F distribution compares these

quantities by giving us the distribution of

F =
S2
x/S

2
y

σ2
x/σ

2
y

Note that F may be written as

F =
S2
x/σ

2
x

S2
y/σ

2
y

=
U/(n− 1)

V/(m− 1)

where U ∼ χ2
n−1, V ∼ χ2

m−1 and U , V are independent.

Example Let Y be a random variable distributed according to Snedecor’s F distribution
with p and q degrees of freedom.

1. Find the pdf of Y .

2. Show that E(Y ) = q/(q − 2), if q > 2.

3. Show that 1/Y is again an F distribution with q and p degrees of freedom.

4. Show that if T ∼ tq then T 2 ∼ F1,q
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22.6 Order Statistics

Let X1, X2, . . . , Xn be a random sample from population with distribution function F (x)
and density f(x). Define X(i) to be the i−th smallest of the {Xi} (i = 1, . . . , n), namely

X(1) ≤ X(2) ≤ · · · ≤ X(n).

We want to find the density function of X(i). Notice that while Xi is one element of
the random sample, X(i) is a statistic which is function of the whole random sample.
Informally, we may write for small ∆x,

fX(i)
(x) ≈

FX(i)
(x+∆x)− FX(i)

(x)

∆x
=
P [X(i) ∈ (x, x+∆x)]

∆x
.

The probability X(i) is in (x, x+∆x) is roughly equal to the probability of (i− 1) obser-
vations in (−∞, x), one in (x, x+∆x) and the remaining (n− i) in (x+∆x,+∞). This
is a trinomial probability

P [X(i) ∈ (x, x+∆x)]

∆x
=

n!

(i− 1)!1!(n− i)!
F (x)i−1[1−F (x+∆x)]n−i

P (one observation ∈ (x, x+∆x))

∆x

As ∆x→ 0, rigorous calculations provide

fX(i)
(x) =

n!

(i− 1)!(n− i)!
F (x)i−1f(x)[1− F (x)]n−i.

Notice that this formula is function of the population cdf and pdf, i.e. of a generic Xi.

Example: Let X1, X2, . . . , Xn be a random sample from U(0, 1). Find the density of
X(i).

The density of X(i) becomes (for 0 < y < 1)

fX(i)
(y) =

n!

(i− 1)!(n− i)!
xi−11(1− x)n−i

=
Γ(n+ 1)

Γ(i)Γ(n+ 1− i)
xi−1(1− x)(n−i+1)−1

This is a Beta(i, n− i+ 1) distribution. We get

E[Y(i)] =
i

n+ 1
, Var(Y(i)) =

j(n− j + 1)

(n+ 1)2(n+ 2)
.

Reading

G. Casella & R. L. Berger 2.1, 4.3, 4.6, 5.1, 5.2, 5.3, 5.4
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23 The Sufficiency Principle

• Each statistic reduces the observed sample into a single number; data reduction.

• Inherently there is some loss of information.

• A good inferential procedure is based on statistics that do not throw too much in-
formation.

23.1 Sufficient Statistics

A sufficient statistic for a parameter θ captures, in a certain sense, all the relevant infor-
mation in the sample about θ.

Sufficiency Principle: If T (Y ) is a sufficient statistic for θ then any inference for θ should
be based on the sample Y only through T (Y ). That is if x and y are two observed samples
(that is x = (x1 . . . xn) and y = (y1 . . . yn)) such that T (x) = T (y) then the inference
about θ should be the same regardless if Y = y or Y = x was observed.

Definition: Let Y = (Y1, Y2, . . . , Yn) be a random sample. A statistic U = T (Y ) is a suf-
ficient statistic for a parameter θ if the conditional distribution of Y |U = u is independent
of θ. In other words if fY (y|θ) is the joint pdf or pmf of the sample Y , and fU(u|θ) is the
pdf or pmf of U , U is a sufficient statistic if

fY |U(y|U = u; θ) =
fY,U(y, u|θ)
fU(u|θ)

=
fY (y|θ)
fU(u|θ)

is a constant as a function of θ for all y (that is it does not depend on θ). Notice that since
U = T (Y ), we have P (Y = y, U = u) = P (Y = y), indeed the event {Y = y} is a
subset of the event {T (Y ) = T (y)} (consider for example the case T (Y ) =

∑n
i=1 Yi).

Notes

• If Y is discrete, the ratio above is a conditional probability mass function.

P (Y = y|T (Y ) = T (y)) =
P (Y = y, T (Y ) = T (y))

P (T (Y ) = T (y))

• If it is continuous it is just a conditional pdf.

• The definition refers to the conditional distribution. A statistic is sometimes defined
as being sufficient for a family of distributions, FY (y|θ), θ ∈ Θ.

Example: Let Y = (Y1, . . . , Yn) be a random sample from a Poisson(λ) population, and
let U = T (Y ) =

∑n
i=1 Yi. It can be shown that U ∼Poisson(nλ). We can also write
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P (Y = y|U = u) =
P (Y = y, U = u)

P (U = u)
,

and note that

P (Y = y, U = u) =

{
0 if U ̸= u,

P (Y = y) if U = u.

so we can then write

P (Y = y|U = u) =
P (Y = y)

P (U = u)
=

∏n
i=1 exp(−λ)λyi/(yi!)

exp(−nλ)(nλ)u/(u!)

=
u!

nu
∏n

i=1 yi!

U is sufficient since there is no λ in the above.

Theorem (Factorization Theorem): Let Y = (Y1, Y2, . . . , Yn) be a random sample with
joint pdf or pmf fY (y|θ). The statistic T (Y ) is sufficient for the parameter θ if and only
if we can find functions g(.) and h(.) such that

fY (y|θ) = g (T (y)|θ)h(y)

for all y ∈ Rn and θ ∈ Θ. (Note that both T and θ can be vectors)

We give the proof for a discrete valued Y . The proof for the continuous case is quite
technical and beyond the scope of this course.

Proof of Factorization Theorem:

Preliminaries: Since T (Y ) is a function of Y we can write

P (Y = y) = P (Y = y, T (Y ) = T (y)) (1)

but NOT
P (T (Y ) = T (y)) = P (Y = y, T (Y ) = T (y))

Indeed,

P (T (Y ) = T (y)) =
∑

yk:T (yk)=T (y)

P (Yk = yk, T (Yk) = T (y))

=
∑

yk:T (yk)=T (y)

P (Yk = yk) (2)

That is the event {Y = y} is a subset of the event {T (Y ) = T (y)} but not the viceversa.
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If T is sufficient: Suppose T is sufficient for θ. That is P (Y = y|T (Y ) = T (y)) is
independent of θ. We can write

Pθ(Y = y)
(1)
= Pθ(Y = y, T (Y ) = T (y))

= Pθ(T (Y ) = T (y))P (Y = y|T (Y ) = T (y))

= g(T (Y ), θ)h(Y ).

since the pmf Pθ(T (Y ) = T (y)) is typically a function of T (Y ) and θ whereas P (Y =
y|T (Y ) = T (y)) is independent of θ due to the sufficiency of T . Note that the function
g(T (Y ), θ) is the pmf of T (Y ).

Converse: Suppose Pθ(Y = y) = g(T (y), θ)h(y). The conditional pmf

Pθ(Y = y|T (Y ) = T (y)) =
Pθ(Y = y, T (Y ) = T (y))

Pθ(T (Y ) = T (y))

(1)(2)
=

Pθ(Y = y)∑
yk:T (yk)=T (y)

Pθ(Yk = yk)

=
g(T (y), θ)h(y)∑

yk:T (yk)=T (y)
g(T (y), θ)h(yk)

=
g(T (y), θ)h(y)

g(T (y), θ)
∑

yk:T (yk)=T (y)
h(yk)

=
h(y)∑

yk:T (yk)=T (y)
h(yk)

,

which is independent of θ. Hence T (Y ) is a sufficient statistic.

Example: Let Y = (Y1, . . . , Yn) be a random sample from the following distributions
find a sufficient statistic for each case.

1. Sufficient statistic for µ from a N(µ, σ2) population with σ2 known.

The joint density may be written as

fY (Y |µ) = (2πσ2)−n/2 exp

(
−n(Ȳ − µ)2 + (n− 1)S2

2σ2

)
= (2πσ2)−n/2 exp

(
(n− 1)S2

2σ2

)
exp

(
−n(Ȳ − µ)2

2σ2

)

The statistic T (Y ) = Ȳ is sufficient for µ since if we set g(T (Y ), µ) = exp
(
−n(Ȳ−µ)2

2σ2

)
and h(Y ) = (2πσ2)−n/2 exp

(
(n−1)S2

2σ2

)
, we have fY (Y |µ) = g(T (Y ), µ)h(Y ).
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2. Sufficient statistic for (µ, σ2) from a N(µ, σ2) population.

The joint density may be written as

fY (Y |µ, σ2) = (2πσ2)−n/2 exp

(
−n(Ȳ − µ)2 + (n− 1)S2

2σ2

)
The statistic T (Y ) = (Ȳ , S2) is sufficient for (µ, σ2) since if we set g(T (Y ), µ, σ2) =
fY (Y |µ, σ2) and h(Y ) = 1, we have fY (Y |µ, σ2) = g(T (Y ), µ, σ2)h(Y ).

Note: The statistic Ȳ is sufficient for µ but not for (µ, σ2).

3. Sufficient statistic for θ from Unif(0, θ).

Let I(Y ∈ A) denote an indicator function, that is a function that equals 1 if Y ∈ A
and 0 otherwise.

The joint density may be written as

fY (y|θ) =
n∏
i=1

1

θ
I(yi > 0)I(yi < θ) =

1

θn
I(max

i
yi < θ)I(min

i
yi > 0)

The statistic T (Y ) = maxi yi is sufficient for θ since if we set g(T (Y ), θ) =
1
θn
I(maxi yi < θ) and h(Y ) = I(mini yi > 0), we have fY (Y |θ) = g(T (Y ), θ)h(Y ).

23.2 Minimal Sufficiency

Example (Sufficiency of the sample): Let Y = (Y1, . . . , Yn) is a sample from a popula-
tion with fYi(yi|θ). Denote the joint density of the sample Y by fY (y|θ).

Note that
fY (y|θ) = fY (y|θ)× 1 = g(T (y)|θ)× h(y),

where
T (Y ) = Y, g(T (y)|θ) = fY (y|θ), h(y) = 1.

Every sample is itself a sufficient statistic. Also every statistic that is a one-to-one function
of a sufficient statistic is itself a sufficient statistic.

• There exist many sufficient statistics.

• Ideally, we would like the simplest possible sufficient statistic.

• If a statistic T is a function of a statistic S, then it contains no more information
than S.

• We look at those sufficient statistics which are still sufficient even though they are
functions of other statistics.
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Definition: A sufficient statistic T (Y ) is a minimal sufficient statistic if for any other
sufficient statistic T ′(Y ), T (Y ) is a function of T ′(Y ).

Some facts about minimal sufficient statistics

• If a sufficient statistic has dimension 1, it must be a minimal sufficient statistic.

• Minimal sufficient statistics are not unique. However if two statistics are minimally
sufficient they must have the same dimension.

• A one-to-one function of a minimal sufficient statistic is also a minimal sufficient
statistic

• The dimension of a minimal sufficient statistic is not always the same as the dimen-
sion of the parameter of interest.

Reading

G. Casella & R. L. Berger 3.4, 6.1, 6.2.1, 6.2.2

24 Point Estimation

Problem:

• Suppose that a real world phenomenon may be described by a probability model
defined through the random variable Y with FY (y|θ).

• Suppose also that a sample Y = (Y1, Y2, . . . , Yn) is drawn from that distribution.

• We want use the information in the random sample Y to get a best guess for θ. In
other words we want a point estimate for θ.

• A function of Y that gives a point estimate θ is an estimator of θ. If we use the
observed random sample Y = y, we get the estimate of θ which is a particular
value of the estimator.

Next, we look at two methods for finding point estimators, the method of moments and
the maximum likelihood estimators. Then we present evaluation methods for estimators.
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24.1 Method of Moments

Description: Let Y = (Y1, Y2, . . . , Yn) be a random sample from population with pdf or
pmf f(y|θ1, . . . , θk). Let a sample moment be defined as

mr =
1

n

n∑
i=1

Y r
i

Remember that the r-th (population) moment is

µr = µr(θ1, . . . , θk) = Eθ(Y
r
i )

Method of moments estimators are found by equating the first k sample moments to the
corresponding k population moments and solving the resulting system of simultaneous
equations.

Example: Y = (Y1, Y2, . . . , Yn) be a random sample from N(µ, σ2) population. Find
estimators for µ and σ2 using the method of moments.

We want estimators for 2 parameters. Hence, we first write down the system of 2 equations

X̄ = E(X) = µ,

1

n

n∑
i=1

X2
i = E(X2) = µ2 + σ2,

and after solving it we get the following estimators

µ̂ = X̄,

σ̂2 =
1

n

n∑
i=1

X2
i − µ̂2 =

1

n

n∑
i=1

X2
i − X̄2 =

1

n

n∑
i=1

(Xi − X̄)2 =
n− 1

n
S2

24.2 The Likelihood Function

Definition: Let Y = (Y1, Y2, . . . , Yn) be a sample from population with pdf (or pmf)
f(yi|θ). Then, given Y = y is observed, the function of θ defined by the joint pdf (or
pmf) of Y = y

L(θ|Y = y) = fY (y|θ)

is called the likelihood function.

Notes
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• In most cases the pdf of Y is thought as a function of Y whereas the likelihood
function is thought as a function of θ for a given observed sample.

• If for θ1, θ2 we have L(θ1|y) > L(θ2|y) then the sample is more likely to have
occurred if θ = θ1 than if θ = θ2. In other words θ1 is a more plausible value than
θ2.

• The likelihood, as a function of θ is not always a pdf.

• Sometimes it is more convenient to work with the log-likelihood, l(θ|y) which is
just the log of the likelihood.

• If Y = (Y1, Y2, . . . , Yn) is a random sample from f(yi|θ), then

L(θ|Y = y) = fY (y|θ) =
n∏
i=1

f(yi|θ)

l(θ|Y = y) = log fY (y|θ) =
n∑
i=1

log f(yi|θ)

Example: Consider X continuous random variable with pdf fX(x|θ), then for small ϵ we
have

Pθ(x− ϵ < X < x+ ϵ)

2ϵ
≃ fX(x|θ) = L(θ|x)

therefore if we compare the probabilities for different values of θ we have

Pθ1(x− ϵ < X < x+ ϵ)

Pθ2(x− ϵ < X < x+ ϵ)
≃ L(θ1|x)
L(θ2|x)

and the value of θ which gives higher likelihood is more likely to be associated to the
observed sample since gives a higher probability.

Example: Likelihood and log-likelihood for exponential(λ):

L(λ|Y = y) = λn exp

(
−λ

n∑
i=1

yi

)
, l(λ|Y = y) = n log λ− λ

n∑
i=1

yi

Example: Likelihood and log-likelihood for N (µ, σ2):

L(µ, σ2|Y = y) =

(
1√
2πσ2

)n
exp

(
−
∑n

i=1(yi − µ)2

2σ2

)
l(µ, σ2|Y = y) = −n

2

(
log(2π) + log(σ2)

)
− 1

2σ2

n∑
i=1

(yi − µ)2
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24.3 Score Function and Fisher’s Information

Definition: The score function associated with the log-likelihood l(θ|y) is

s(θ|y) = ∂l(θ|y)
∂θ

=
1

L(θ|y)
∂L(θ|y)
∂θ

,

Proposition: E(s(θ|Y )) = 0.

Proof: (for the continuous case)

E[s(θ|Y )] =

∫
Rn

s(θ|y)f(y|θ)dy =

∫
Rn

∂L(θ|y)
∂θ

L(θ|y)
f(y|θ)dy =

∫
Rn

∂

∂θ
f(y|θ)dy =

∂

∂θ

∫
Rn

f(y|θ)dy = 0,

because L(θ|y) = f(y|θ) and the last integral is equal to one, since the pdf is normalised.
Here it has to be intended that θ is the true value of the unknown parameters.

Notes:

1. For the discrete case replace the integrals with sums.

2. Although the score function is usually viewed as a function of θ, the expectation
is taken with respect to Y , actually with respect to the distribution of Y which
depends on θ. This may be interpreted as follows. If the experiment was repeated
many times the score function would on average equal 0. That is, if we start at the
true value of the parameters, on average over many experiments the likelihood does
not change if we make an infinitesimal change of the parameter.

In most cases, if we plot the likelihood function against θ, we get a curve with a peak in
the maximum. The sharper the peak is, the more information about θ exists in the sample.
This is captured by the Fisher’s information:

I(θ|y) ≡ I(θ|Y = y) = E
[
s(θ|Y )2

]
= E

[(
∂

∂θ
l(θ|Y )

)2
]

This is the variance of the score (when computed at the true value of θ), so the larger it is
the more the score in the true value is affected by minimal changes in the parameters, the
sharper is the peak, the more precise is our information about θ.

Proposition: Show that under regularity conditions (e.g. exponential family)

I(θ|y) = E
[
s(θ|Y )2

]
= −E

[
∂2

∂θ2
l(θ|Y )

]
= −E

[
∂

∂θ
s(θ|Y )

]
again here it has to be intended that θ is the true value of the unknown parameters.
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In this case at the true value of θ the Fisher info is also the negative Hessian of the log-
likelihood so it measures the concavity of the log-likelihood. In particular since the Fisher
information must be always positive (it is a variance), then the Hessian must be negative
which jointly with a zero expectation of the score (first derivative of the log-likelihood)
tells us that the true value of θ is a maximum of the log-likelihood for any realisation
Y = y.

Proof:

0 =
d

dθ
E [s(θ|y)] = d

dθ

∫
Rn

s(θ|y)f(y|θ)dy =

∫
Rn

d

dθ
[s(θ|y)f(y|θ)] dy

=

∫
Rn

[(
d

dθ
s(θ|y)

)
f(y|θ) + s(θ|y) d

dθ
f(y|θ)

]
dy

=

∫
Rn

[
d

dθ
s(θ|y) + s(θ|y)2

]
f(y|θ)dy,

(
d

dθ
f(y|θ) = s(θ|y)f(y|θ)

)
= E

[
d

dθ
s(θ|y) + s(θ|y)2

]
= E

[
d

dθ
s(θ|y)

]
+ E

[
s(θ|y)2

]

Let Y = (Y1, . . . , Yn) be a random sample from a pdf with fYi(yi|θ). Denote with s(θ|yi)
and I(θ|yi) the Score function and Fisher information for Yi = yi respectively. Then, for
a realisation of the random sample we have

s(θ|y) =
n∑
i=1

s(θ|yi), I(θ|y) = nI(θ|yi).

Proof: The log-likelihood function is

ℓ(θ|Y ) = log

(
n∏
i=1

f(Yi|θ)

)
=

n∑
i=1

ℓ(θ|Yi)

Hence

s(θ|Y ) =
∂ℓ(θ|Y )

∂θ
=

n∑
i=1

∂ℓ(θ|Yi)
∂θ

=
n∑
i=1

s(θ|Yi)

For the Fisher information, using the fact that (Y1, . . . , Yn) are i.i.d., we have

I(θ|y) = E

( n∑
i=1

s(θ|Yi)

)2
 =

n∑
i=1

E
[
(s(θ|Yi))2

]
= nI(θ|yi),

Or alternatively, using the Hessian,

I(θ|Y ) = −E
(
∂s(θ|Y )

∂θ

)
= −E

(
n∑
i=1

∂s(θ|Yi)
∂θ

)

=
n∑
i=1

−E
(
∂s(θ|Yi)
∂θ

)
=

n∑
i=1

I(θ|yi) = nI(θ|yi).
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Example: Let Y = (Y1, . . . , Yn) be a random sample from an Exp(λ). Show that the
score function is

s(θ|y) = n

λ
−

n∑
i=1

yi,

and the Fisher’s Information matrix is

I(θ|y) = n

λ2

Vector parameter case If θ = (θ1, . . . , θp)
′, then the score function is the vector

s(θ|Y ) = ∇θℓ(θ|Y ) =

(
∂

∂θ1
ℓ(θ|Y ), . . . ,

∂

∂θp
ℓ(θ|Y )

)′

and Fisher’s information is the matrix

E [s(θ|Y )s(θ|Y )′] .

The (i, j)th element of the Fisher’s information matrix is

[I(θ|y)]ij = E

[
∂

∂θi
l(θ|Y )

∂

∂θj
l(θ|Y )

]

It also holds that

1. E [s(θ|Y )] = 0p

2. I(θ|y) = V [s(θ|Y )] , V [.] denotes a covariance matrix

3. I(θ|y) = −E [∇θ∇′
θℓ(θ|Y )] = −E [∇θs(θ|Y )]

or else

[I(θ|y)]i,j = −E
[

∂2

∂θi∂θj
ℓ(θ|Y )

]

Example: Let Y = (Y1, . . . , Yn) be a random sample from a N(µ, σ2). Show that the
score function is
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s(θ|y) =

 1
σ2

∑n
i=1(yi − µ),

− n
2σ2 +

1
2σ4

∑n
i=1(yi − µ)2



and the Fisher’s Information matrix is

I(θ|y) =

 n
σ2 0

0 n
2σ4



24.4 Maximum Likelihood Estimators

We have seen that the true value of the parameter θ must be such that the log-likelihood at-
tains its maximum. This motivates mathematically the definition of maximum likelihood
estimator.

Definition: For each sample point Y = y let θ̂(y) be the parameter value at which the
likelihood L(θ|y) attains its maximum as a function of θ. A maximum likelihood esti-
mator of the parameter θ based on Y is the function θ̂(Y ).

Maximization: In general the likelihood function can be maximized using numerical
methods. However if the function is differentiable in θ, calculus may be used. The values
of θ such that

s(θ|y) = ∂ℓ(θ|y)
∂θ

= 0,

are possible candidates. These points may not correspond to the maximum because

1. They may correspond to the minimum. The second derivative must also be checked.

2. The zeros of the first derivative locate only local maxima, we want a global maxi-
mum.

3. The maximum may be at the boundary where the first derivative may not be 0.

4. These points may be outside the parameter range.

Notice that, an application of the Weak Law of Large Numbers tells us that, as n → ∞,
we must have

1

n
s(θ|Y ) =

1

n

n∑
i=1

s(θ|Yi)
p→ E [s(θ|Yi)] = 0

which justifies our necessary condition.
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Example: Let Y = (Y1, Y2, . . . , Yn) be a random sample fromN(µ, 1), −∞ < µ < +∞.
Find the MLE for µ. The log likelihood function is equal to

ℓ(µ|y) = const. − 1

2

n∑
i=1

(yi − µ)2 = −1

2

n∑
i=1

y2i + µ
n∑
i=1

yi −
1

2
nµ2

Setting the score function equal to 0 yields a candidate for the global maximum:

∂

∂µ
ℓ(µ̂|y) = 0 ⇒

n∑
i=1

yi − nµ̂ = 0 ⇒ µ̂ = Ȳ .

We could check whether it corresponds to a maximum (and not a minimum) if the second
derivative of the log-likelihood is negative

∂2

∂µ2
ℓ(µ̂|y) = −n < 0

The MLE for µ is µ̂ = Ȳ (In fact more checking is required but it is omitted for simplic-
ity).

Example: We cannot always use the above calculus recipe. For example let Y =
(Y1, Y2, . . . , Yn) be a random sample from U(0, θ). Assume to observe Y = y and rank
the realisations as y(1) ≤ . . . ≤ y(n). These are then realisations of the order statistics Y(i).
The likelihood for θ given Y = y is

L(θ|y) = θ−nI(y(1) ≥ 0)I(y(n) ≤ θ)

and the log-likelihood for Y(1) ≥ 0 is (notice that by construction all realisations are such
that y(1) ≥ 0)

ℓ(θ|y) = −n log(θ) if θ ≥ y(n),

The function ℓ(θ|y) is maximized at θ̂ = y(n) which is our estimate. Hence θ̂ = Y(n) is
the MLE.

Induced likelihood: Let Y be a sample with likelihood L(θ|y) and let λ = g(θ). The
induced likelihood for λ given Y = y is

L∗(λ|Y = y) = sup
θ:g(θ)=λ

L(θ|Y = y)

Theorem (Invariance property of the MLE’s): If θ̂ is the MLE for θ, then for any
function g(.) the MLE of g(θ) is g(θ̂).

Example: MLE for µ2 in N(µ, 1) case is Ŷ 2, MLE for p/(1 − p) in Binomial(n, p) is
p̂/(1− p̂) etc.
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24.5 Evaluating Estimators

Being a function of the sample, an estimator is itself a random variable. Hence it has a
mean and a variance. Let θ̂ be an estimator of θ. The quantity below

E(θ̂ − θ),

is termed as the bias of the estimator θ̂. If E(θ̂) = θ the estimator is unbiased.

Estimators are usually evaluated based on their bias and variance.

The mean squared error (MSE) of an estimator θ̂ is the function of θ defined by

MSE(θ) = E(θ̂ − θ)2.

Note that

E(θ̂ − θ)2 = E[θ̂ − E(θ̂) + E(θ̂)− θ]2

= E{[θ̂ − E(θ̂)]2 + [E(θ̂)− θ]2 + 2[θ̂ − E(θ̂)][E(θ̂)− θ]}
= E[θ̂ − E(θ̂)]2 + E[(Bias)2] + 2[E(θ̂)− E(θ̂)][E(θ̂)− E(θ)]

= V ariance+ (Bias)2

An estimator θ̂1 is uniformly better than θ̂2 if it has smaller MSE for all θ.

Example: Compare the MSE’s of S2, n−1
n
S2, and σ̂2 = 1 as estimators for σ2 in the

presence of a random sample Y of size n from N(µ, σ2)

E

(
n− 1

n
S2

)
=
n− 1

n
σ2,

Therefore n−1
n
S2 is biased.

MSE(S2) = ... =
2

n− 1
σ4 >

2n− 1

n2
σ4 =MSE

(
n− 1

n
S2

)
, ∀σ2, n = 2, 3, . . .

Thus n−1
n
S2 is uniformly better than S2. But it is not uniformly better than σ̂2 = 1 which

has zero MSE when σ2 = 1.

90



24.6 Best Unbiased Estimators

As seen from the previous example, we cannot find a ‘uniformly best’ estimator. Hence
we restrict attention to unbiased estimators. The MSE of an unbiased estimator is equal to
its variance. A best unbiased estimator is also termed as a minimum variance unbiased
estimator.

Theorem (Cramér - Rao inequality): Let Y = (Y1, . . . , Yn) be a sample and U = h(Y )
be an unbiased estimator of g(θ). Under regularity conditions the following holds for all
θ

V (U) ≥
[
∂
∂θ
g(θ)

]2
I(θ|y)

.

Note that if g(θ) = θ we get

V (U) ≥ 1

I(θ|y)
,

and if also Y = (Y1, Y2, . . . , Yn) is a random sample

V (U) ≥ 1

nI(θ|yi)
.

Proof: We know that when θ is the true unknown value then

|Corr(X,Y)| ≤ 1 ⇒ Cov(X, Y )2 ≤ V (X)V (Y ), (3)

s(θ|y) =
∂
∂θ
f(y|θ)
f(y|θ)

⇒ ∂

∂θ
f(y|θ) = s(θ|y)f(y|θ), (4)

E[s(θ|Y )] = 0, (5)

V [s(θ|Y )] = I(θ|y), (6)

and by assumption
E(U) = E[h(Y )] = g(θ). (7)

Cov[h(Y ), s(θ|Y )] = E[h(Y )s(θ|Y )]− E[h(Y )]E[s(θ|Y )]

(5)
= E[h(Y )s(θ|Y )] =

∫
Rn

h(y)s(θ|y)f(y|θ)dy

(4)
=

∫
Rn

h(y)
∂

∂θ
f(y|θ)dy =

∂

∂θ
E[h(Y )]

(7)
=

∂

∂θ
g(θ)
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If we replace into inequality (3), we will get

Cov[h(Y ), s(θ|Y )]2 =

[
∂

∂θ
g(θ)

]2
≤ V [h(Y )]V [s(θ|Y )] ⇒

(6)⇒
[
∂

∂θ
g(θ)

]2
≤ V (U)I(θ|y).

Example: Let Y = (Y1, Y2, . . . , Yn) be a random sample from N(µ, 1).

ℓ(µ|y) = −n
2
log(2π)− 1

2

n∑
i=1

(yi − µ)2.

∂

∂µ
ℓ(µ|y) =

n∑
i=1

(yi − µ) =
n∑
i=1

(yi − ȳ + ȳ − µ)

=
n∑
i=1

(yi − ȳ) +
n∑
i=1

(ȳ − µ) = n(ȳ − µ).

I(µ|y) = −E
(
∂

∂µ
n(Ȳ − µ)

)
= −E(−n) = n.

Hence the Cramér - Rao lower bound for µ is 1/n.

Consider µ̂ = Ȳ as an estimator for µ.

E(Ȳ ) = µ,

V (Ȳ ) =
1

n
.

Since µ̂ = Ȳ is unbiased and attains the Cramér - Rao lower bound for µ, it is also a
MVUE for µ.

Example: Let Y = (Y1, Y2, . . . , Yn) be a random sample from Poisson(λ). It is not hard
to check that I(λ|y) = n/λ. Both the mean and the variance of a Poisson distribution are
equal to λ. Hence

E(Ȳ ) = E(Yi) = λ,

E(S2) = V (Yi) = λ.

Consider the estimators λ̂1 = Ȳ and λ̂2 = S2. They are both unbiased. Which one to
choose?

V (Ȳ ) =
V (Yi)

n
=
λ

n
.

Since λ̂1 is unbiased and attains the Cramér - Rao lower bound for λ, it is also a MVUE
for λ.
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Theorem (Cramér - Rao attainment): If U = h(Y ) is an unbiased estimator of g(θ),
then U attains the Cramér - Rao lower bound if and only if

s(θ|y) = b(θ) [h(y)− g(θ)] .

Example: Random sample Y from N(µ, 1).

s(µ|y) = n(ȳ − µ) : b(µ) = n, h(y) = ȳ, g(µ) = µ.

Example: Random sample Y from Poisson(λ).

s(λ|y) = −n+

∑n
i=1 yi
λ

=
n

λ
(ȳ − λ) ,

b(λ) =
n

λ
, h(y) = ȳ, g(λ) = λ.

Proof of Cramér - Rao attainment theorem: The Cramér - Rao lower bound comes
from the inequality

Cov[h(Y ), s(θ|Y )]2 ≤ V [h(Y )]V [s(θ|Y )].

The lower bound is attained if and only if the equality holds in the above which is the
case if and only if s(θ|Y ) and h(Y ) are linearly related:

s(θ|Y ) = a(θ) + b(θ)h(Y ). (8)

Taking expectations on both sides we get

E[s(θ|Y )] = a(θ) + b(θ)E[h(Y )]
(5),(7)⇒

(5),(7)⇒ 0 = a(θ) + b(θ)g(θ) ⇒ a(θ) = −b(θ)g(θ).

Substituting into (8), we get

s(θ|Y ) = −b(θ)g(θ) + b(θ)h(Y ) = b(θ)[h(Y )− g(θ)].

Theorem (Uniqueness of MVUE’s): If U is a best (minimum variance) unbiased esti-
mator of g(θ), then U is unique.

Proof: We will use again the Cauchy Schwarz inequality

Cov(X, Y ) ≤ [V (X)V (Y )]1/2, (9)
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and the fact that when the equality holds in the above, we can write

Y = a(θ) + b(θ)X

Let U ′ be another minimum variance unbiased estimator (V (U) = V (U ′)), and consider
the estimator U∗ = 1

2
U + 1

2
U ′.

Note that U∗ is also unbiased

E(U∗) = E

(
1

2
U +

1

2
U ′
)

=
1

2
E(U) +

1

2
E(U ′) = g(θ),

and

V (U∗) = V

(
1

2
U +

1

2
U ′
)

= V

(
1

2
U

)
+ V

(
1

2
U ′
)
+ 2Cov

(
1

2
U,

1

2
U ′
)

=
1

4
V (U) +

1

4
V (U ′) +

1

2
Cov(U,U ′)

(9)

≤ 1

4
V (U) +

1

4
V (U ′) +

1

2
[V (U)V (U ′)]1/2

= V (U). (V (U) = V (U ′))

We must have equality in the previous expression because U is a MVUE. This implies

Cov(U,U ′) = [V (U)V (U ′)]1/2 = V (U), and (10)

U ′ = a(θ) + b(θ)U. (11)

We can write

V (U) = V (U ′)
(10)
= Cov(U,U ′)

(11)
= Cov[U, a(θ) + b(θ)U ]

= Cov[U, b(θ)U ] = b(θ)V (U).

Hence b(θ) = 1. Also

E(U ′) = E(U)
(11)⇒ E(U) + a(θ) = E(U) → a(θ) = 0.

Since a(θ) = 0 and b(θ) = 1, U is unique.
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24.7 Sufficiency and Minimum Variance Unbiased Estimators

We can use the concept of sufficiency for searching for minimum variance unbiased esti-
mators.

Theorem (Rao-Blackwell): Let U(Y ) be an unbiased estimator of g(θ) and T (Y ) be a
sufficient statistic for θ. Define W (Y ) = E(U(Y )|T (Y )). Then for all θ

1. E(W ) = g(θ),

2. V (W ) ≤ V (U),

3. W is a uniformly better (unbiased) estimator than U .

Proof: The proof of the Rao-Blackwell theorem is based on the following conditional
expectation properties

E(X) = E[E(X|Y )] (12)
V (X) = V [E(X|Y )] + E[V (X|Y )] (13)

We can write
g(θ) = E(U)

(12)
= E[E(U |T )] = E[W (Y )],

V (U)
(13)
= V [E(U |T )] + E[V (U |T )]
= V [W (Y )] + E[V (U |T )] ≥ V [W (Y )].

It remains to prove that W (Y ) is indeed an estimator, i.e. independent of parameters.
If U is a function only of Y , then the distribution of U |T is independent of parameters
(definition of sufficiency). Hence so is W (Y ).

Note: conditioning an unbiased estimator on a sufficient statistics results in a uniform
improvement, actually conditioning on anything always givens an improvement but the
result might depend on θ hence it will not be an estimator. Sufficiency is crucial then.

Example: Let (Y1, . . . , Yn) be a random sample from a distribution with mean µ and
variance σ2 and suppose that T =

∑n
i=1 Yi is sufficient for µ. Consider the estimator

µ̂1 = Y1 for µ and find a better one.

For the estimator µ̂1, we have

E(µ̂1) = E(Y1) = µ, V (µ̂1) = V (Y1) = σ2

Since Y1, Y2, . . . , Yn are identically distributed
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E(Yi|T ) = E(Y1|T ) (14)

The Rao-Blackwell theorem states that the following estimator is better

µ̂2 = E(µ̂1|T ) = E(Y1|T ) =
1

n

n∑
i=1

E(Y1|T )
(14)
=

1

n

n∑
i=1

E(Yi|T )

=
1

n
E

(
n∑
i=1

Yi|T

)
=

1

n

n∑
i=1

Yi = Ȳ ,

Indeed

E(µ̂2) = E(Ȳ ) = µ, V (µ̂2) = V (Ȳ ) =
σ2

n
≤ V (µ̂1)

Reading

G. Casella & R. L. Berger 6.3.1, 7.1, 7.2.1, 7.2.2, 7.3.1, 7.3.2, 7.3.3

25 Interval Estimation

25.1 Interval Estimators and Confidence Sets

• Point estimates provide a single value as a best guess for the parameter(s) of interest.

• Interval estimates provide an interval which we believe contains the true value of
the parameter(s).

• More generally we may look for a confidence sets (not necessarily an interval), for
example when when we are unsure whether the result of the procedure is an interval
and or in cases of more than one parameters.

Definition of interval estimator/estimate: Let Y = (Y1 . . . Yn) be a sample with density
fY (y|θ) and U1(Y ), U2(Y ) be statistics such that U1(x) ≤ U2(x) for any x. The random
interval [U1(Y ), U2(Y )] is an interval estimator for θ.

If the observed sample is y, then interval [U1(y), U2(y)] is an interval estimate for θ.

Definition of coverage probability: The probability that the random interval contains
the true parameter θ is termed as coverage probability and denoted with

P [U1(Y ) ≤ θ ≤ U2(Y )]
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Definition of confidence level: The infimum of all the coverage probabilities (for each θ)
is termed as confidence level (coefficient) of the interval.

inf
θ
P [U1(Y ) ≤ θ ≤ U2(Y )]

Notes:

• The random variables in the coverage probability are U1(Y ) and U2(Y ). The inter-
val may be interpreted as the probability that U1(Y ) and U2(Y ) contain θ.

• If an interval has confidence level 1−α the interpretation is: ‘If the experiment was
repeated many times 100× (1− α)% percent of the corresponding intervals would
contain the true parameter θ.’

• The random variables in P [U1(Y ) ≤ θ ≤ U2(Y )] are U1(Y ) and U2(Y ). Thus

P [U1(Y ) ≤ θ ≤ U2(Y )] = P [U1(Y ) ≤ θ ∩ U2(Y ) ≥ θ]

= 1− P [U1(Y ) > θ ∪ U2(Y ) < θ]

= 1−
{
P [U1(Y ) > θ] + P [U2(Y ) < θ]− P [U1(Y ) > θ ∩ U2(Y ) < θ]

}
= 1− P [U1(Y ) > θ]− P [U2(Y ) < θ]

since P [U1(Y ) > θ ∩ U2(Y ) < θ] = 0.

Example: given an random sample X = (X1 . . . X4) from N(µ, 1), compare the sample
mean X̄ which is a point estimator with the interval estimator [X̄−1, X̄+1]. At first sight
with the interval estimator we just loose precision, but we actually gained in confidence.
Indeed, while P (X̄ = µ) = 0, we have

P (X̄ − 1 ≤ µ ≤ X̄ + 1) = P (−1 ≤ X̄ − µ ≤ 1) = P

(
−2 ≤ X̄ − µ√

1/4
≤ 2

)
= .9544

because X̄ ∼ N(µ, 1/4). Therefore, we loose in precision but we now have over 95%
chances of covering the unknown parameter with this interval estimator.

Definition of expected length: Consider an interval estimator [U1, U2]. The length
U2 − U1 is a random variable. One possible measure is its expected length

E(U2 − U1)

A good interval estimator should minimise the expected length while maximising the
confidence level.

Some notation: Suppose that the random variable X follows a distribution X . We will
denote with Xα the number for which

P (X ≤ Xα) = α
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Naturally

P (X > Xα) = 1− α

We use such notation for various distributions. In particular we use the letter Z and Zα

for the standard normal distribution where we also write

P (Z ≤ Zα) = Φ(Zα) = α.

Same length different confidence levels:

Suppose that we have a random sample from a N(µ, 1) and we want an interval estimator
for µ. Let k1, k2 be positive constants. All the intervals below have the same length.

1. [−k1, k2]

2. [Y1 − k1, Y1 + k2]

3. [Ȳ − k1, Ȳ + k2]

Let’s evaluate their confidence levels. Note that Yi − µ ∼ N(0, 1)

1. This interval does not depend on the sample. If µ ∈ [k1, k2], the coverage proba-
bility is 1, otherwise it is 0. Thus the confidence level is 0.

2. The coverage probability is

P (Y1 − k1 ≤ µ ≤ Y1 + k2) = 1− P (Y1 − k1 > µ)

− P (Y1 + k2 < µ) = 1− P (Y1 − µ > k1)− P (Y1 − µ < −k2)
= Φ(k1)− Φ(−k2) = Φ(k1) + Φ(k2)− 1

which is equal with the confidence level.

3. Using the fact that
√
n(Ȳ − µ) ∼ N(0, 1) and similar calculations we get a confi-

dence level of

Φ(
√
nk1) + Φ(

√
nk2)− 1 ≥ Φ(k1) + Φ(k2)− 1

Same confidence level different lengths:
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Suppose that we have a random sample from a N(µ, 1) and we want an interval estimator
for µ. We know that Z =

√
n(Ȳ −µ) ∼ N(0, 1). If α1, α2 are positive numbers such that

α = α1 + α2, we can write

P (Zα1 ≤
√
n(Ȳ − µ) ≤ Z1−α2) = 1− P (Z < Zα1)− P (Z > Z1−α2)

= 1− α1 − [1− (1− α2)]

= 1− (α1 + α2)

= 1− α,

By rearrangement we get the interval estimator for µ[
Ȳ − 1√

n
Z1−α2 , Ȳ +

1√
n
Z1−α1

]

The (expected) length of the interval above is

E

[
Ȳ +

1√
n
Z1−α1 − Ȳ − 1√

n
Z1−α2

]
=

1√
n
(Z1−α1 + Z1−α2)

Using statistical tables we can construct the following table, where we fix α1 + α1 =
0.05. Hence we have the length of 95% confidence intervals for the mean of a normal
distribution with unit variance for various lower and upper endpoints.

α1 α2 Z1−α1 Z1−α2

√
n length

0 0.05 +∞ 1.645 ∞
0.01 0.04 2.326 1.751 4.077
0.02 0.03 2.054 1.881 3.935

0.025 0.025 1.96 1.96 3.920
0.03 0.02 1.881 2.054 3.935
0.04 0.01 1.751 2.326 4.077
0.05 0 1.645 +∞ ∞

Why 95%:

Let us consider symmetric intervals with confidence levels 0.8, 0.9, 0.95, and 0.99. Using
the previous procedure and statistical tables we can construct the following table where
we have the length of intervals for the mean of a normal distribution with unit variance
for various confidence levels.

α1 α2 Z1−α1 Z1−α2

√
n length

0.1 0.1 1.2816 1.2816 2.563
0.05 0.05 1.645 1.645 3.290

0.025 0.025 1.96 1.96 3.920
0.005 0.005 2.576 2.576 5.152

The level 95% is chosen as a compromise between length and confidence.
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25.2 Finding Interval Estimators from Pivotal Functions

A way to construct a 1− α confidence set for θ is by using a pivotal function.

Definition of a pivotal function: Consider a sample Y with density fY (y|θ) and suppose
that we are interested in constructing an interval estimator for θ. A function G = G(Y, θ)
of Y and θ is a pivotal function for θ if its distribution is known and does not depend on
θ.

Example: Let Y1, Y2, . . . , Yn be a random sample from a N(µ, σ2) with µ unknown and
σ2 known. We know that

Ȳ ∼ N

(
µ,
σ2

n

)
,

and we can use the above to get the following pivotal function

Z =
Ȳ − µ

σ/
√
n

∼ N(0, 1).

Notice that Z depends on µ but its distribution does not change regardless of the value of
µ.

Example: Let Y1, Y2, . . . , Yn be a random sample from a N(µ, σ2) with µ known and σ2

unknown. We know that

Zi =
Yi − µ

σ
∼ N (0, 1) ,

and that Zi’s are independent. Getting
∑

i Z
2
i gives us the following pivotal function

n∑
i=1

Z2
i =

∑n
i=1(Yi − µ)2

σ2
∼ χ2

n.

Example: Let Y1, Y2, . . . , Yn be a random sample from a N(µ, σ2) with both µ, σ2 un-
known. Now we cannot use

Ȳ − µ

σ/
√
n

∼ N(0, 1)

as a pivotal function for µ because its distribution also depends on the unknown parameter
σ. Instead we use

Ȳ − µ

S/
√
n

∼ tn−1.

In the same way we cannot use
∑

i Z
2
i for σ2 since its distribution depends on µ which is

unknown, instead we can use
(n− 1)S2

σ2
∼ χ2

n−1.

100



Constructing an interval from a pivotal function:

Suppose that we have a sample Y . To construct an interval estimator with confidence level
1− α for the parameter θ using a pivotal function one can use the following procedure:

Step 1: Find a pivotal function G = G(Y, θ) based on a reasonable point estimator for θ.

Step 2: Use the distribution of the pivotal function to find values g1 and g2 such that

P (g1 ≤ G(Y, θ) ≤ g2) = 1− α

Step 3: Manipulate the quantities G ≥ g1 and G ≤ g2 to make θ the reference point. This
yields inequalities of the form

θ ≥ U1(Y, g1, g2) and θ ≤ U2(Y, g1, g2),

for some functions U1(.) and U2(.) independent of parameters.

Step 4: Give the following interval

[U1(Y, g1, g2), U2(Y, g1, g2)].

Note: The endpoints U1, U2 are usually functions of one of the g1 or g2 but not the
other.

Example: Interval for µ, N(µ, σ2) with known σ2

Suppose that we have a random sample Y from a N(µ, σ2) (with σ2 known) and we want
an interval estimator for µ with confidence level 1− α.

Step 1: We know that

Z = Z(Y, µ) =
Ȳ − µ

σ/
√
n

∼ N(0, 1).

Thus Z is a pivotal function.

Step 2: We can write

P (Zα/2 ≤ Z ≤ Z1−α/2) =

= 1− P (Z < Zα/2)− P (Z > Z1−α/2)

= 1− α/2− [1− (1− α/2)]

= 1− (α/2 + α/2) = 1− α.

Step 3: Rearranging the inequalities we get

Ȳ − µ

σ/
√
n

≥ Zα/2 and
Ȳ − µ

σ/
√
n

≤ Z1−α/2

which we can rewrite as

µ ≤ Ȳ − σ√
n
Zα/2, and µ ≥ Ȳ − σ√

n
Z1−α/2
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Step 4: Note that Zα/2 = −Z1−α/2. We get

[Ȳ − σ√
n
Z1−α/2, Ȳ +

σ√
n
Z1−α/2]

Numerical Example: Suppose that we had n = 10, Ȳ = 5.2, σ2 = 2.4 and α = 0.05.
From suitable tables or statistical software we get Z.975 = 1.96, so an interval estimator
for µ with confidence level 1− α is

[5.2− 1.96
√
2.4/10, 5.2 + 1.96

√
2.4/10]

or else [4.24, 6.16].

Example: Interval for µ, N(µ, σ2), with unknown σ2

Suppose that we have a random sample Y from a N(µ, σ2) (with also σ2 unknown) and
we want an interval estimator for µ with confidence level 1− α.

Step 1: We know that

T = T (Y, µ) =
Ȳ − µ

S/
√
n

∼ tn−1.

Thus T is a pivotal function.

Step 2: We can write

P (tn−1,α/2 ≤ T ≤ tn−1,1−α/2) =

= 1− P (T < tn−1,α/2)− P (T > Tn−1,1−α/2)

= 1− α/2− [1− (1− α/2)]

= 1− (α/2 + α/2) = 1− α.

Step 3: Rearranging the inequalities we get

Ȳ − µ

S/
√
n

≥ tn−1,α/2 and
Ȳ − µ

S/
√
n

≤ tn−1,1−α/2

which we can rewrite as

µ ≤ Ȳ − S√
n
tn−1,α/2, and µ ≥ Ȳ − S√

n
tn−1,1−α/2

Step 4: Note that tn−1,α/2 = −tn−1,1−α/2. We get[
Ȳ − S√

n
tn−1,1−α/2, Ȳ +

S√
n
tn−1,1−α/2

]
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Numerical Example: Suppose that we had n = 10, Ȳ = 5.2, S2 = 2.4 and α = 0.05.
From suitable tables or statistical software we get t9,.975 = 2.262, so an interval estimator
for µ with confidence level 1− α is

[5.2− 2.262
√
2.4/10, 5.2 + 2.262

√
2.4/10]

or else [4.09, 6.31].

Note: Compared with the known σ2 case the interval is now larger despite the fact that
S = σ. The t distribution has fatter tails than the standard Normal. On the other hand as
n grows the t distribution gets closer to the Normal.

Reading

G. Casella & R. L. Berger 9.1, 9.2.1, 9.2.2, 9.3.1

26 Asymptotic Evaluations

So far we considered evaluation criteria based on samples of finite size n. But as men-
tioned above there may be cases where a satisfactory solution does not exist. An alter-
native route is to approach this problems with letting n → ∞, in other words study the
asymptotic behaviour of the problem. We will look mainly into asymptotic properties
of maximum likelihood procedures.

26.1 Summary of the Point/Interval Estimation Issues

• In point estimation we use the information from the sample Y to provide a best
guess for the parameters θ.

• For this we use statistics termed as estimators,

θ̂ = h(Y ),

that are functions of the sample Y . The realization of the sample provides a point
estimate which reflects our belief for the parameter θ.

• There are many ways to find estimator functions. For example one can use the
method of moments or maximum likelihood estimators.

• We look for estimators with small mean squared error, defined as

E[(θ̂ − θ)2].
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• But it is very hard to compare estimators based solely on MSE. Even irrational
estimators like

θ̂ = 1,

are not worse than reasonable ones for all θ. For this reason we restrict attention to
unbiased estimators

E(θ̂) = θ.

• An optimal solution to the problem is given by a minimum variance unbiased
estimators. Note that the variance of an unbiased estimator is equal to its MSE. If
such an estimator exists it is unique.

• The Cramér-Rao theorem provides a lower bound for the variance of an unbiased
estimator. Therefore if the variance of an unbiased estimator attains that bound, it
provides an optimal solution to the problem.

• Alternatively if an unbiased estimator is based on a complete sufficient statistic it
is also of minimum variance (see Rao-Blackwell theorem).

• Problem: Even an unbiased estimator may not be available or may not exist.

• In interval estimation we want to use the information from the sample Y to provide
an interval which we believe contains the true value of the parameter(s).

• The probability that the random interval contains the true parameter θ is termed as
coverage probability.

• The infimum of all the coverage probabilities is termed as confidence coefficient
(level) of the interval.

• A way to construct an interval is by using a pivotal function, that is a function of
Y and θ with distribution independent of θ.

• Alternatively one may invert an α level test of H0 : θ = θ0. The parameter points
θ0 that provide an acceptance regionA that contains the observed sample, provide
a 1− α confidence level interval. Conversely we can find the acceptance region of
an α level H0 : θ = θ0 test by taking the sample points Y for which the resulting
1− α confidence level interval contains θ0 (see definitions in Chapter 6).

• There may exist more than one intervals with the same level. One way to choose
between them is through their expected length.

• Problem: Sometimes it may be even hard to find any ‘reasonable’ interval estima-
tor.

26.2 Asymptotic Evaluations

Definition: A sequence of estimators Un = U(X1, . . . , Xn) is a consistent sequence of
estimators for a parameter θ if, for every ϵ > 0 and every θ ∈ Θ,
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lim
n→∞

Pθ(|Un − θ| < ϵ) = 1.

In other words a consistent estimator converges in probability to the parameter θ it is esti-
mating. Notice that for any θ the property must hold, that is if we change θ the probability
Pθ changes but the limit will still hold.

Theorem: If Un is a sequence of estimators for a parameter θ satisfying

1. limn→∞ V (Un) = 0,

2. limn→∞ Bias(Un) = 0,

for every θ ∈ Θ, then Un is a consistent sequence of estimators.

Proof: we use Chebychev inequality, as n→ ∞,

Pθ(|Un − θ| > ϵ) ≤ E[(Un − θ)2]

ϵ2
=

Bias(Un)2 + V (Un)

ϵ2
→ 0.

An example is provided by the sample mean which has zero bias and variance V (Xi)/n.

Definition: An estimator is asymptotically unbiased for θ if its bias goes to 0 as n→ ∞
for any θ ∈ Θ.

Definition: The ratio of the Cramér-Rao lower bound over the variance of an estimator is
termed as efficiency. An efficient estimator has efficiency 1. We can compare estimators
in terms of their asymptotic efficiency, that is their efficiencies as n→ ∞. An estimator
is asymptotically efficient if its asymptotic efficiency is 1.

Theorem (Asymptotic normality of MLEs): Under weak regularity conditions the max-
imum likelihood estimator g(θ̂) satisfies

√
n
[
g(θ̂)− g(θ)

]
d−→ N

(
0,

g′(θ)2

I(θ|yi)

)
, n→ ∞,

where g is a continuous function. We may also write

g(θ̂)
approx∼ N(g(θ), v(θ)),

where v(θ) = g′(θ)2

nI(θ|yi) which is the Cramér-Rao lower bound, since I(θ|y) = nI(θ|yi).
Therefore, Var(g(θ̂)) = v(θ).

The estimator θ̂ is computed using a sample of size n hence it depends on n and the
theorem tells us its behaviour when we consider larger and larger samples.

Corollary: Under weak regularity conditions the MLE θ̂, or a function of it, is consistent,
asymptotically unbiased and efficient for the parameter it is estimating.

Slutsky’s theorem If, as n→ ∞, Xn
d→ X and Yn

p→ a with a constant then
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a. YnXn
d→ aX;

b. Xn + Yn
d→ X + a.

Actually asymptotic normality implies always consistency. Indeed, we have√
nI(θ|yi)(θ̂ − θ)

d→ Z ∼ N(0, 1), n→ ∞,

then

(θ̂−θ) =

(
1√

nI(θ|yi)

)(√
nI(θ|yi)(θ̂ − θ)

)
d→ lim

n→∞

(
1√

nI(θ|yi)

)
Z = 0, n→ ∞,

and convergence in distribution to a point is equivalent to convergence in probability. So
θ̂ is consistent estimator of θ.

Asymptotic distribution of MLE’s - Sketch of proof: Assume g(θ) = θ and let s′(θ|Y )
denote ∂

∂θ
s(θ|Y ). Let θ̂ be the MLE of the true value which we denote as θ0.

Consider a Taylor series expansion around the true value θ0

s(θ|Y ) = s(θ0|Y ) + s′(θ0|Y )(θ − θ0) + . . .

Ignore the higher order terms and substitute θ with θ̂

s(θ̂|Y ) = s(θ0|Y ) + s′(θ0|Y )(θ̂ − θ0) ⇒

⇒ θ̂ − θ0 = − s(θ0|Y )

s′(θ0|Y )

(
since s(θ̂|Y ) = 0

)
⇒

⇒
√
n(θ̂ − θ0) =

√
n
n
s(θ0|Y )

− 1
n
s′(θ0|Y )

. (15)

Then, recall that

s(θ|Y ) =
n∑
i=1

s(θ|Yi). (16)

Using (16), the numerator of (15) becomes
√
n

n
s(θ0|Y ) =

√
n

(∑n
i=1 s(θ0|Yi)

n
− 0

)
d→ N

(
0, I(θ0|yi)

)
, n→ ∞,

from the Central Limit Theorem for i.i.d. random variables and since E[s(θ0|Yi)] = 0,
Var[s(θ0|Yi)] = I(θ0|Yi).

For the denominator of (15), using the Weak Law of Large Numbers for i.i.d. random
variables, we get

− 1

n
s′(θ0|Y ) = − 1

n

n∑
i=1

s′(θ0|Yi)
p→ E [−s′(θ0|Yi)] = I(θ0|yi), n→ ∞.
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Combining these two results and using Slutsky’s theorem we get that, as n→ ∞,

√
n(θ̂ − θ0) =

√
n
n
s(θ0|Y )

− 1
n
s′(θ0|Y )

d→ N

(
0,

1

I(θ0|yi)

)
⇒ θ̂ − θ0

d→ N

(
0,

1

I(θ0|y)

)
,

since I(θ0|y) = nI(θ0|yi).

Asymptotic pivotal function from MLEs: Note that√
I(θ|y)(θ̂ − θ)

approx∼ N(0, 1).

Also, since θ̂ is consistent for θ, the quantity I(θ̂|y) converges in probability to I(θ|y).
Hence, in a second level of approximation, we can write for large sample sizes n√

I(θ̂|y)(θ̂ − θ)
approx∼ N(0, 1).

We say that this function is asymptotically pivotal for θ.

Example: Asymptotic estimation of Bernoulli Let (Y1, . . . , Yn) be a random sample
from a Bernoulli(p). We know that

• T =
∑n

i=1 Yi ∼ Binomial(n, p).

• The MLE for p is p̂ = Ȳ .

• The Fisher’s information is I(p) = n
p(1−p) .

The MLE for p, p̂ = Ȳ is consistent, (asymptotically) unbiased and efficient. The asymp-
totic distribution of p̂ = Ȳ is

p̂
approx∼ N

(
p,
p(1− p)

n

)
.

In an extra level of approximation we may use

p̂
approx∼ N

(
p,
p̂(1− p̂)

n

)
.

Let Sp =
p̂(1−p̂)
n

. Then

p̂
approx∼ N (p, Sp) ⇒ p̂− p√

Sp

approx∼ N (0, 1) .

We can use the above to construct the following asymptotic 1− α confidence interval[
p̂−Z1−α/2

√
Sp, p̂+ Z1−α/2

√
Sp

]
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Note: The above interval may take values outside [0,1].

Example: Asymptotic estimators, intervals for functions of parameters Let Y =
(Y1, . . . , Yn) be a random sample from a N(0, σ2). We want a point and interval estimator
for σ. The MLE for σ2 is σ̂2 = n−1

n
S2, where S2 is the sample variance. Hence, a

consistent, asymptotically unbiased and efficient estimator is the MLE for σ, that is

σ̂ =
√
σ̂2 = S

√
n− 1

n

Note that both σ̂2 and σ̂ are biased for small samples. But their bias goes to 0 as n→ ∞.

We are interested in σ = g(σ2) = (σ2)1/2. The Cramér - Rao lower bound is equal to

v(σ) =

(
∂
∂σ2 g(σ

2)
)2

nI(σ2|yi)
=

1
4σ2

n
2σ4

=
σ2

2n

If we further substitute v(σ̂) = σ̂2/2n for v(σ) we get

σ̂
approx∼ N (σ, v(σ̂)) ⇒ σ̂ − σ√

v(σ̂)

approx∼ N(0, 1)

which leads to the following asymptotic 1− α confidence level interval for σ[
σ̂ −Z1−α/2

√
v(σ̂), σ̂ + Z1−α/2

√
v(σ̂)

]
.

Reading

G. Casella & R. L. Berger 10.1.1, 10.1.2, 10.3.1, 10.3.2, 10.4.1

27 Hypothesis Testing

Problem:

• Suppose that a real world phenomenon/population may be described by a probabil-
ity model defined through the random variable Y with FY (y|θ).

• Suppose also that a sample Y = (Y1, Y2, . . . , Yn) is drawn from that distribu-
tion/population.

• We want to use the information in the random sample Y to answer statements about
the population parameters θ.
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27.1 Statistical tests

27.1.1 Definitions

• A hypothesis is a statement about a population parameter.

• The two complementary hypotheses in a hypothesis testing problem are often called
the null and alternative. They are denoted by H0 and H1 respectively.

• A simple hypothesis takes the form

H0 : θ = c,

where c is a constant. A hypothesis that is not simple is called composite, e.g.

H0 : θ ≤ c,

• A hypothesis test is a rule that specifies

1. For which sample values the decision is made to accept H0 as true.

2. For which sample values H0 is rejected and H1 is accepted as true.

• The subset of the sample space for which H0 will be rejected is termed as rejection
region or critical region. The complement of the rejection region is termed as a
acceptance region.

• The test rule is based on a statistic, termed as the test statistic.

Test Statistics

• The crucial part is to identify an appropriate test statistic T .

• One of the desired features of T is to have an interpretation such that large (or small)
values of it provide evidence against H0.

• We also want to know the distribution of T under H0, that is when H0 holds.

• We focus on test statistics that have tabulated distributions underH0 (Normal, t, χ2,
F ). But this is only for convenience and it is not a strict requirement.

Example: Let Y = (Y1, Y2, . . . , Yn) be random sample Y of size n from a N(µ, σ2)
population (with σ2 is known). Is µ equal to µ0 or larger for a given value µ0?

The hypotheses of the test are

H0 : µ = µ0 versus H1 : µ > µ0
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One test may be based on the test statistic Ȳ with rejection region

R =

[
µ0 + 1.96

σ√
n
, ∞

]
The rule is then to reject H0 if Ȳ > µ0 + 1.96 σ√

n
.

27.1.2 Types of errors in tests, power function and p-value

Consider a test with H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

Type I error: If θ ∈ Θ0 (H0 is true) but the test rejects H0.

Type II error: If θ ∈ Θ1 (H1 is true) but the test does not reject H0.

Accept H0 Reject H0

H0 is true Correct Decision Type I error
H1 is true Type II error Correct Decision

The Type I error is associated with the significance level and the size of the test.

Definition: The test has significance level α if

sup
θ∈Θ0

Pθ(Reject H0) ≤ α

The test has size α if
sup
θ∈Θ0

Pθ(Reject H0) = α

Note: If the null hypothesis is simple then the size of the test is the probability of a type I
error.

Power function: Let H0 : θ ∈ Θ0, H1 : θ ∈ Θc
0. The power function is defined as

β(θ) = Pθ(Reject H0),

that is the probability that the null hypothesis is rejected if the true parameter value is θ.

Note:

β(θ) = Pθ(Reject H0) =

{
probability of Type I error if θ ∈ Θ0,
1− probability of Type II error, if θ ∈ Θc

0.
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Also we can define the level and the size of the test through the power function

Level: sup
θ∈Θ0

β(θ) ≤ α, and Size: sup
θ∈Θ0

β(θ) = α.

Ideally we would like the power function β(θ) to be 0 when θ ∈ Θ0 and 1 when θ ∈ Θ1,
but this is not possible. In practice we fix the size α to a small value (usually 0.05) and
for a given size we try to maximize the power. Hence

• Failure to reject the null hypothesis does not imply that it holds and we say that we
do not reject H0 rather than saying we accept H0.

• We usually set the alternative hypothesis to contain the statement that we are inter-
ested in proving.

Example of a power function (previous example continued): The power function of
the test is

β(µ) = P (Y ∈ R) = P
(
Ȳ > µ0 + Z1−ασ/

√
n
)

= P

(
Ȳ − µ0

σ/
√
n
> Z1−α

)
= P

(
Ȳ − µ

σ/
√
n
> Z1−α −

µ− µ0

σ/
√
n

)
= 1− Φ

(
Z1−α −

µ− µ0

σ/
√
n

)
.

p-value: From the definitions so far, we either reject or not reject the null hypothesis. The
following quantity is also informative regarding the weight of evidence against H0.

Definition: Let T (Y ) be a test statistic such that large values of T give evidence against
H0. For an observed sample point y the corresponding p-value is

p(y) = sup
θ∈Θ0

P (T (Y ) ≥ T (y))

Notes:

1. Clearly 0 ≤ p(y) ≤ 1. The closer to 0 the more likely to reject.

2. In words, a p-value is the probability that we got the result of the sample or a more
extreme result. Extreme in the sense of evidence against H0.
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3. If we have a fixed significance level α, then we can describe the rejection region as

R = {y : p(y) ≤ α}

We reject H0 if the probability of observing a more extreme result than that of the
sample, is small (less than α).

4. A similar definition can be made if small values of T give evidence against H0.

Example of a p-value (previous example continued): Let Y = (Y1, Y2, . . . , Yn) be
random sample Y of size n from a N(µ, σ2) population (with σ2 is known). We want to
test H0 : µ ≤ µ0 versus H1 : µ > µ0.

Note Y denotes the sample whereas y the observed sample. Also we use Ȳ as T (Y ) and
large values of Ȳ provide evidence against H0,

p(y) = sup
µ≤µ0

P (Ȳ ≥ ȳ) = sup
µ≤µ0

P

(
Ȳ − µ

σ/
√
n

≥ ȳ − µ

σ/
√
n

)
= sup

µ≤µ0

{
1− P

(
Ȳ − µ

σ/
√
n

≤ ȳ − µ

σ/
√
n

)}
= sup

µ≤µ0

{
1− Φ

(
ȳ − µ

σ/
√
n

)}
= 1− Φ

(
ȳ − µ0

σ/
√
n

)

27.1.3 Constructing Statistical Tests

The procedure for constructing a test can be given by the following general directions:

Step 1: Find an appropriate test statistic T . Figure out whether large or small values of T
provide evidence against H0. Also find its distribution under H0.

Step 2: Use the definition of the level/size α and write (R is unknown)

Pθ0(T ∈ R) ≤ α, or Pθ0(T ∈ R) = α

Step 3: Solve the equation to get R. The test rule is then ‘Reject H0’ if the sample Y is in
{Y : T (Y ) ∈ R}.

Example of a Statistical test (cont’d) Let’s come back to the previous example with
H0 : µ = µ0 vs H1 : µ > µ0.

Step 1: Test statistic Ȳ . Large values are against H0. Under H0, Ȳ ∼ N(µ0, σ
2) or we

could use
Ȳ − µ0

σ/
√
n

∼ N(0, 1)
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Step 2: We know that under H0

Pµ0

(
Ȳ − µ

σ/
√
n
> Z1−α

)
= P

(
Ȳ − µ0

σ/
√
n
> Z1−α

)
= α

Note: It can be shown that the above also holds for H0 : µ ≤ µ0.

Step 3: From

P

(
Ȳ − µ0

σ/
√
n
> Z1−α

)
= α,

we can get to

P
(
Ȳ > µ0 + Z1−ασ/

√
n
)
= α,

hence

R = {Y : Ȳ > µ0 + Z1−ασ/
√
n}

27.2 Most Powerful Tests

The tests we are interested in control by construction the probability of a type I error (it
is at most α). A good test should also have a small probability of type II error. In other
words it should also be a powerful test.

Definition: Let C be a class of tests for testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc
0. A test in

class C, with power function β(θ), is a Uniformly Most Powerful (UMP) class C test if

β(θ) ≥ β′(θ)

for every θ ∈ Θc
0 and every β′(θ) that is a power function of a test in class C.

Theorem (Neyman-Pearson Lemma): Consider a test H0 : θ = θ0 versus H1 : θ = θ1
and let fY (y|θ0), fY (y|θ1) denote the pdf (pmf) of the sample Y . Suppose that a test with
rejection region R satisfies

y ∈ R, if
fY (y|θ1)
fY (y|θ0)

> k,

for some k > 0 and
α = Pθ0(Y ∈ R).

A test that satisfies the above is a uniformly most powerful test of size α.

Notes:
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1. The value k may be chosen to satisfy

Pθ0,k(Y ∈ R) = Pθ0

(
fY (y|θ1)
fY (y|θ0)

> k

)
= α

2. The above ratio of pdf’s (or pmf’s) is the ratio of the likelihood functions.

Proof of Neyman-Pearson Lemma: Preliminaries: We give the proof for continuous
random variables. For discrete random variables just replace integrals with sums.

Let ϕS(Y ) denote the rule of a test S with rejection region RS . Note that ϕS(Y ) = I(Y ∈
RS) where I(·) is the indicator function. Hence for all θ∫

Rn

ϕS(Y )fY (y|θ)dy =

∫
RS

fY (y|θ)dy (17)

E[ϕS(Y )] =

∫
Rn

ϕS(y)fY (y|θ)dy =

∫
RS

fY (y|θ)dy

= Pθ(Reject H0) = βS(θ) (18)

where βS(θ) is the power function of S.

Let T be the Neyman-Pearson lemma test, that is

RT = {y ∈ Rn : fY (y|θ1)− kfY (y|θ0) > 0},

with rule ϕT (Y ) = I(Y ∈ RT ). Let S be another test with ϕS(Y ). Then

ϕT (y) ≥ ϕS(y), for y ∈ RT , (19)

because in RT we have ϕT (y) = 1 while in general 0 ≤ ϕS(y) ≤ 1.

Consider the quantity B = ϕS(y)[fY (y|θ1) − kfY (y|θ0)]. If y ∈ RT , B ≥ 0. If y /∈ RT ,
B ≤ 0. Hence∫

Rn

ϕS(y)[fY (y|θ1)− kfY (y|θ0)]dy ≤
∫
RT

ϕS(y)[fY (y|θ1)− kfY (y|θ0)]dy (20)

Main Proof: Let T be the Neyman-Pearson lemma test and S be another test of size α.

βS(θ1)− kβS(θ0)
(18)
=

∫
Rn

ϕS(y)[fY (y|θ1)− kfY (y|θ0)]dy

(20)

≤
∫
RT

ϕS(y)[fY (y|θ1)− kfY (y|θ0)]dy

(19)

≤
∫
RT

ϕT (y)[fY (y|θ1)− kfY (y|θ0)]dy

(17)
=

∫
Rn

ϕT (y)[fY (y|θ1)− kfY (y|θ0)]dy

(18)
= βT (θ1)− kβT (θ0)
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Since both T and S are size α tests,

βT (θ0) = βS(θ0) = α.

Therefore we can write

βS(θ1) ≤ βT (θ1),

which implies that T is a uniformly most powerful test of size α.

Example (Neyman-Pearson Lemma): Let Y = (Y1, Y2, . . . , Yn) be random sample Y
of size n from a N(µ, σ2) population (with σ2 is known). We want to test H0 : µ = µ0

versus H1 : µ = µ1.

Step 1: The likelihood ratio from the Neyman-Pearson Lemma is

LR =
L(µ1|Y )

L(µ0|Y )
=

(2πσ2)−n/2 exp{− 1
2σ2 [n(Ȳ − µ1)

2 + (n− 1)S2]}
(2πσ2)−n/2 exp{− 1

2σ2 [n(Ȳ − µ0)2 + (n− 1)S2]}

= exp
( n

2σ2
(−Ȳ 2 + 2µ1Ȳ − µ2

1 + Ȳ 2 − 2µ0Ȳ + µ2
1)
)

= exp
( n

2σ2
[(µ2

0 − µ2
1)− 2Ȳ (µ0 − µ1)]

)
If µ0 < µ1 the above is large when Ȳ is large. If µ0 > µ1 the above is large when Ȳ is
small. So Ȳ can be a test statistic. Its distribution is known to be

Ȳ ∼ N

(
µ,

σ2

n

)

Step 2: We want

Pµ0

{
exp

( n

2σ2
[(µ2

0 − µ2
1)− 2Ȳ (µ0 − µ1)]

)
> k

}
= α.

Step 3: If µ0 < µ1 the above is equivalent with

Pµ0

{
Ȳ >

(µ2
0 − µ2

1)− 2σ2

n
log(k)

2(µ0 − µ1)

}
= α

But we also know that Ȳ ∼ N(µ0,
σ2

n
) under H0, then

Pµ0
(
Ȳ > µ0 + Z1−ασ/

√
n
)
= α,

is an equivalent test being based on the same statistic. This will give us a most powerful
test for this testing problem.
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Example (Neyman-Pearson Lemma): Let a random sample Y = (Y1, . . . , Yn) from a
Poisson(λ) and H0 : λ = λ0 vs H1 : λ = λ1. The Neyman-Pearson lemma likelihood
ratio is

LR =
e−nλ1λ

∑
i Yi

1 /
∏

i Yi!

e−nλ0λ
∑

i Yi
0 /

∏
i Yi!

= en(λ0−λ1)
(
λ1
λ0

)∑
i Yi

A test with rejection region from LR > k is such that

P

(
n∑
i=1

Yi >
log k − n(λ0 − λ1)

log λ1 − log λ0
= k1

)
= α

but we also know that
∑

i Yi ∼ Poisson(nλ0) under H0 so we can find k.

Let n = 8, λ0 = 2 (
∑

i Yi ∼ Poisson(16)) and λ1 = 6. The size is 0.058 with k1 = 22
and 0.037 with k1 = 23. A test with significance level 0.05 corresponds to a k1 = 23.
What if λ1 = 150?

Neyman-Pearson lemma for 1-sided composite hypotheses:

Neyman-Pearson lemma refers to tests with simple hypotheses

H0 : θ = θ0 versus H1 : θ = θ1.

but sometimes may be used for composite hypotheses as well.

Assume a rejection region independent of θ1. If θ0 < θ1, the test is most powerful for all
θ1 > θ0. Hence it is most powerful for

H0 : θ = θ0 versus H1 : θ > θ0.

Similarly, if θ0 > θ1 the Neyman-Pearson lemma test is most powerful for

H0 : θ = θ0 versus H1 : θ < θ0.

What about
H0 : θ ≤ θ0 versus H1 : θ > θ0, ?

The power is not affected, but is the size of the test still α? we would have to show that

sup
θ≤θ0

P (Reject H0) = α.

Example (Neyman-Pearson Lemma): Let Y = (Y1, Y2, . . . , Yn) be a random sample
from N(µ, σ2) population (with σ2 is known).
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We showed that for testing H0 : µ = µ0 versus H1 : µ = µ1, the UMP size α test is
constructed by

LR = exp
( n

2σ2
[(µ2

0 − µ2
1)− 2Ȳ (µ0 − µ1)]

)
> k

which for µ0 < µ1 is equivalent to

Ȳ > µ0 + Z1−ασ/
√
n.

Note that the rejection region is independent of µ1, thus the test is applicable for all
µ1 > µ0. Hence it is also the UMP test for

H0 : µ = µ0, versus H1 : µ > µ0

What about testing problems of the following form?

H0 : µ ≤ µ0, versus H1 : µ > µ0.

The UMP test above would be a size α test if

sup
µ≤µ0

P (Reject H0) = sup
µ≤µ0

β(µ) = α.

where β(µ) is the power function (derived on the notes of previous lectures). We can
write

sup
µ≤µ0

β(µ) = sup
µ≤µ0

[
1− Φ

(
Z1−α −

µ− µ0

σ/
√
n

)]
.

The function inside the supremum is increasing in µ and equal to α if µ = µ0. Therefore
the above supremum is equal to α.

Note: The UMP test usually does not exist for 2-sided (composite) alternative hypotheses.

Corollary: Consider the previous testing problem, let T (Y ) be a sufficient statistic for
θ, and g(t|θ0), g(t|θ1) be its corresponding pdf’s (or pmf’s). Then any test with rejection
region S (a subset of the sample space of T ) is a UMP level α test if it satisfies

t ∈ S, if
g(t|θ1)
g(t|θ0)

> k,

for some k > 0 and α = Pθ0(T ∈ S).

Proof: Since T is a sufficient statistic we can write

f(y|θ1)
f(y|θ0)

=
g(t|θ1)h(y)
g(t|θ0)h(y)

=
g(t|θ1)
g(t|θ0)

.
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27.3 Likelihood ratio test

Let Θ = Θ0 ∪Θc
0 and consider hypothesis testing problems with

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc
0.

Definition of Likelihood Ratio test: Let Y = y be an observed sample and define the
likelihood by L(θ|y). The likelihood ratio test statistic is

λ(y) =
supθ∈Θ L(θ|y)
supθ∈Θ0

L(θ|y)
.

A likelihood ratio test is a test with rejection region y : λ(y) ≥ c.

The constant c may be determined by the size, i.e.

sup
θ∈Θ0

Pθ(λ(Y ) > c) = α.

Notes:

• The numerator is evaluated at the value of θ corresponding to the MLE, that is the
maximum of the likelihood over the entire parameter range.

• The denominator contains a maximum over a restricted parameter range.

• Hence the numerator is larger or equal to the denumerator and the statistic of the
likelihood ratio test is always greater than 1.

• Its distribution is usually unknown.

Example (Likelihood Ratio test): Let a random sample Y = (Y1, . . . , Yn) from a
N(µ, σ2), (with σ2 known). Consider the test H0 : µ = µ0 versus H1 : µ ̸= µ0. The
MLE is µ̂ = Ȳ , hence the likelihood ratio test statistic is

λ(Y ) =
L(µ̂|Y )

L(µ0|Y )
=

(2πσ2)−n/2 exp{− 1
2σ2 [n(Ȳ − µ̂)2 + (n− 1)S2]}

(2πσ2)−n/2 exp{− 1
2σ2 [n(Ȳ − µ0)2 + (n− 1)S2]}

= exp

(
n(Ȳ − µ0)

2

2σ2

)
.

The test λ(Y ) > k is equivalent with the test
∣∣∣ Ȳ−µ0
σ/

√
n

∣∣∣ ≥ k1.
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We can write the previous rejection region as

R =

{
y :

ȳ − µ0

σ/
√
n

≤ −k1
}
∪
{
y :

ȳ − µ0

σ/
√
n

≥ k1

}
or

R =
{
y : ȳ ≤ µ0 − k1σ/

√
n
}
∪
{
y : ȳ ≥ µ0 + k1σ/

√
n
}

Since Ȳ−µ0
σ/

√
n
∼ N(0, 1), if we set k1 = Z1−α/2 the size will be α:

Pµ0(Y ∈ R) = Pµ0

(
Ȳ − µ0

σ/
√
n

≤ −Z1−α/2

)
+ Pµ0

(
Ȳ − µ0

σ/
√
n

≥ Z1−α/2

)
= Φ(Zα/2) + 1− Φ(Z1−α/2) = α/2 + 1− (1− α/2)

= α

Note: Equivalently one can use the fact that 2 log λ(Y ) = (Ȳ−µ0)2
σ2/n

∼ χ2
1.

Theorem (Likelihood ratio test and sufficiency): Let Y be a sample parametrised by θ
and T (Y ) be a sufficient statistic for θ. Also let λ(.), λ∗(.) be the likelihood ratio tests for
Y and T respectively. Then for every y in the sample space

λ(y) = λ∗(T (y)).

Proof: because of sufficiency we have

λ(y) =
supθ∈Θ L(θ|y)
supθ∈Θ0

L(θ|y)
=

supθ∈Θ g(θ|T (y))h(y)
supθ∈Θ0

g(θ|T (y))h(y)

=
supθ∈Θ L

∗(θ|T (y))
supθ∈Θ0

L∗(θ|T (y))
= λ∗(T (y)).

Likelihood Ratio test for nuisance parameters

Suppose that θ can be split in two groups: ψ the main parameters and ν the parameters that
are of little interest. We are interested in testing the hypothesis that ψ takes a particular
value

H0 : ψ = ψ0, ν ∈ N

H1 : ψ ̸= ψ0, ν ∈ N.

The likelihood ratio test is

λ(y) =
supψ,ν L(ψ, ν|y)
supν L(ν|ψ0, y)

.

The test may be viewed as a comparison between two models:

• The constrained model under H0 with parameters ν.
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• The unconstrained model under H1 with parameters ν, ψ.

Generally in statistics, models with many parameters have better fit but do not always give
better predictions. Parsimonious models achieve a good fit with not too many parameters.
They usually perform better in terms of prediction. The likelihood ratio tests provides a
useful tool for finding parsimonious models.

Example (Likelihood Ratio test): Suppose that X1, . . . , Xn and Y1, . . . , Yn are two in-
dependent random samples from two exponential distributions with mean λ1 and λ2 re-
spectively. We want to test

H0 : λ1 = λ2 = λ, versus H1 : λ1 ̸= λ2.

The likelihood function is

L(λ1, λ2|x, y) = λ−n1 exp

(
−

n∑
i=1

xi/λ1

)
λ−n2 exp

(
−

n∑
i=1

yi/λ2

)
.

Under the unconstrained model of H1 we have λ̂MLE
1 = X̄ and λ̂MLE

2 = Ȳ . Under the
constrained model of H0 we get

λ̂MLE = (X̄ + Ȳ )/2.

Hence, the likelihood ratio test statistic is

LR =
L(λ̂MLE

1 , λ̂MLE
2 |x, y)

L(λ̂MLE, λ̂MLE|x, y)
=

(X̄ + Ȳ )2n/22n

X̄nȲ n

= 2−2n

{√
X̄/Ȳ +

√
Ȳ /X̄

}2n

.

We do not know the distribution of the LR test statistic. We may attempt to isolate T =
X̄/Ȳ , but since LR is not monotone in T we cannot construct a test.

Note: We will see in the next sections how deal with such cases by constructing asymp-
totic tests.

27.4 Other tests based on the likelihood

The Wald test: Suitable for testing simple null hypotheses H0 : θ = θ0 versus H0 : θ ̸=
θ0. The statistic of the test is

Z =
θ̂ − θ0

se(θ̂)

The estimator θ̂ is the MLE and a reasonable estimate for its standard error se(θ̂) =√
V (θ̂) is given by Fisher’s information.
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The Score test: Similar to the Wald test but it takes the form

Z =
S(θ0)√
I(θ0)

where S(·) is the Score function and I(·) is the Fisher information.

Multivariate versions of the above tests exist. These tests are similar to the likelihood
ratio test but not identical. As with the likelihood ratio test, their distribution is generally
unknown. For ‘large’ sample sizes the likelihood ratio, score and Wald tests are equiva-
lent.

28 Asymptotic Evaluations for Hypothesis Testing

28.1 Summary for Hypothesis Testing Issues

• In hypothesis testing we want to use the information from the sample Y to choose
between two hypotheses about the parameter θ: the null hypothesis H0 and the
alternative H1. The sample values for which the H0 is rejected (accepted) is called
rejection (acceptance) region.

• There are two possible types of errors. Type I error is if we falsely reject H0

whereas type II is if we don’t reject H0 when we should.

• The level and size α of a test provide an upper bound for the type I error.

• The rejection region R, and hence the test itself, is specified using the probability
that the sample Y belongs to R under H0 is bounded by α. If H0 : θ ∈ Θ0 we use

sup
θ∈Θ0

Pθ(Y ∈ R)

• A famous test is the likelihood ratio test.

• The type II error determines the power of a test. In practice we fix α and try to
minimize (maximize) the type II error (power).

• To find a most powerful test we can use the Neyman-Pearson Lemma. It refers
to tests where both H0 and H1 are simple hypotheses but can be extended in some
cases to composite hypotheses. A version based on sufficient statistics, rather than
the whole sample Y , is available.

• Problem: A uniformly most powerful test may not be available or may not exist.
Sometimes it may be even hard to find any ‘reasonable’ test.
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28.2 Asymptotic Evaluations

Theorem (Asymptotic distribution of scalar LRTs): For testing H0 : θ = θ0 versus
H1 : θ ̸= θ0, assume a random sample Y parametrised by a scalar parameter θ and let
λ(Y ) be the likelihood ratio test. Under H0 as n→ ∞

2 log λ(Y )
d−→ χ2

1

provided certain regularity conditions hold for the likelihood.

Suppose that θ can be split in two groups: θ = (ψ, ν) where ψ are the main parameters of
interest of dimension k. Consider the test

H0 : ψ = ψ0, ν ∈ N

H1 : ψ ̸= ψ0, ν ∈ N.

Equivalently, suppose that we want to compare the constrained model of H0 with the
unconstrained model of H1.

Theorem (Asymptotic distribution of multi-parameter LRTs): Provided certain regu-
larity conditions hold, under H0

2 log λ(Y )
d−→ χ2

k n→ ∞.

Note that k is the number of restrictions we are testing for.

Example: Let Y = (Y1, Y2, . . . , Yn) be a random sample from an Exponential(λ) distri-
bution. We want to test

H0 : λ = λ0 versus H1 : λ ̸= λ0.

The MLE of λ is λ̂ = Ȳ . The likelihood ratio test statistic is

LR(Y ) =
supλ>0 L(λ|Y )

L(λ0|Y )
=

λ̂−n exp(−nȲ /λ̂)
λ−n0 exp(−nȲ /λ0)

=
Ȳ −n exp(−n)

λ−n0 exp(−nȲ /λ0)
.

We cannot construct an exact test since

• The distribution of LR(Y ) is unknown,

• The distribution of Ȳ is known but LR(Y ) is non-monotone in Ȳ .
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Consider the quantity

2 logLR(Y ) = 2n
[
log(λ0)− log(Ȳ )− (1− Ȳ /λ0)

]
The previous theorem establishes that, under H0 and for n→ ∞,

2 logLR(Y ) ∼ χ2
1

Hence, the asymptotic likelihood ratio test of size α rejects if 2 logLR(Y ) > χ2
1,1−α,

where χ2
1,1−α is the (1− α)th percentile of a χ2

1 distribution.

Example: Let Y = (Y1, Y2, . . . , Yn) be a random sample from an Poisson(λ) distribution.
We want to test

H0 : λ = λ0 versus H1 : λ ̸= λ0.

The MLE of λ is λ̂ = Ȳ . The likelihood ratio test statistic is

LR(Y ) =
supλ>0 L(λ|Y )

L(λ0|Y )
=

exp(−nλ̂)λ̂nȲ

exp(−nλ0)λnȲ0

= exp[n(λ0 − Ȳ )]

(
λ0
Ȳ

)−nȲ

.

We cannot construct an exact test since

• The distribution of LR(Y ) is unknown,

• The distribution of Ȳ is known but LR(Y ) is non-monotone in Ȳ .

Consider the quantity

2 logLR(Y ) = 2n
[
(λ0 − Ȳ )− Ȳ log(λ0/Ȳ )

]
The previous theorem establishes that, under H0 and for n→ ∞,

2 logLR(Y ) ∼ χ2
1

Hence, the asymptotic likelihood ratio test of size α rejects if 2 logLR(Y ) > χ2
1,1−α.

Reading

G. Casella & R. L. Berger 8.1, 8.2.1, 8.3.1, 8.3.2, 8.3.4, 10.3, 10.4.1
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